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This month’s article focuses on an initial review of techniques for conducting cross validation in 
R. Next month, a more in-depth evaluation of cross validation techniques will follow. Cross 
validation is useful for overcoming the problem of over-fitting. Over-fitting is one aspect of the 
larger issue of what statisticians refer to as shrinkage (Harrell, Lee, & Mark, 1996). Over-fitting 
is a term which refers to when the model requires more information than the data can provide. 
For example, over-fitting can occur when a model which was initially fit with the same data as 
was used to assess fit. Much like exploratory and confirmatory analysis should not be done on 
the same sample of data, fitting a model and then assessing how well that model performs on the 
same data should be avoided. When we speak of assessing how well a model performs, we 
generally think of fit measures (e.g. R², adj. R², AIC, BIC, RMSEA, etc.); but, what we really 
would like to know is how well a particular model predicts based on new information. This 
really gets at the goals of science and how we go about them; observation yields description, 
experimentation yields explanation, and all of those utilize statistical models with the goal of 
explanation and/or prediction. When predictions are confirmed, evidence is born for supporting a 
theory. When predictions fail, evidence is born for rejecting a theory.  

Fit measures, whether in the standard regression setting or in more complex settings, are biased 
by over-fitting – generally indicating better fit, or less prediction error than is really the case. 
Prediction error refers to the discrepancy or difference between a predicted value (based on a 
model) and the actual value. In the standard regression situation, prediction error refers to how 
well our regression equation predicts the outcome variable scores of new cases based on 
applying the model (coefficients) to the new cases’ predictor variable scores. When dealing with 
a single sample, typically the residuals are a reflection of this prediction error; where the 
residuals are specifically how discrepant the predicted values (y-hat or ŷ) are from the actual 
values of the outcome (y). However, because of over-fitting, these errors or residuals will be 
biased downward (less prediction error) due to the actual outcome variable values being used to 
create the regression equation (i.e. the prediction model). Cross validation techniques are one 
way to address this over-fitting bias.  

Cross validation is a model evaluation method that is better than simply looking at the residuals. 
Residual evaluation does not indicate how well a model can make new predictions on cases it has 
not already seen. Cross validation techniques tend to focus on not using the entire data set when 
building a model. Some cases are removed before the data is modeled; these removed cases are 
often called the testing set. Once the model has been built using the cases left (often called the 



training set), the cases which were removed (testing set) can be used to test the performance of 
the model on the “unseen” data (i.e. the testing set).  

The examples below are meant to show how some common cross validation techniques can be 
implemented in the statistical programming language environment R. The examples below focus 
on standard multiple regression situations using a sample drawn from a simulated population of 
true scores. Next month’s article will show how the population was generated and how each 
sample was drawn, as well as a more in-depth exploration of how cross validation techniques 
address the over-fitting problem.  

Example Data 

The examples below were designed to be representative of a typical modeling strategy, where the 
researcher has theorized a model based on a literature review (and other sources of information) 
and has collected a sample of data. The setting for the examples below concerns a model with 
seven hypothesized predictors (x1, x2, x3, x4, x5, x6, & x7), each interval/ratio scaled, and one 
interval/ratio outcome variable (y). All variables have an approximate mean of 10. The sample 
contains two additional columns, one which identifies cases sequentially in the sample (s.id) and 
one which identifies cases sequentially in the population from which it was drawn (p.id). The 
sample contains 100 cases randomly sampled from a defined population of 1,000,000 
individuals.   

First, read in the sample data from the web, naming it ‘sample1.df’ (df = data.frame), and getting 
the ubiquitous ‘head’ and ‘summary’ to get an idea of what the data looks like.  

 

The ‘Design’ Package 



Next, we specify the model. Typically, we would use the ‘lm’ function from the base ‘stats’ 
package to specify an Ordinary Least Squares (OLS) regression model. However, here we will 
use the ‘ols’ function in the ‘Design’ package (Harrell, 2009). So, first we must load the ‘Design’ 
package, which has several dependencies.  

 

Now, we can use the ‘ols’ function to specify the model and get a summary of it. Make sure to 
set the optional arguments ‘x = TRUE’ and ‘y = TRUE’ as these will save a design matrix of 
predictors and a vector of outcome values. These two objects will be used in the cross validation 
techniques below. If you are not familiar with the scientific notation of R, the ‘e-00’ refers to a 
negative exponent and the ‘e+00’ refers to a positive exponent. For example, 5.234e-03 = 
0.005234 and 5.234e+03 = 5234.00.  



 

Next, we can begin exploring cross validation techniques. The 'validate' function in the 'Design' 
package "does resampling validation of a regression model, with or without backward step-down 
variable deletion" (Harrell, 2009, p. 187). Here, our examples focus on OLS regression, but the 
'validate' function can hand a logistic model as well; as long as the model is fit with the 'lrm' 
function (Logistic Regression Model) in the 'Design' package. The key part of the output for this 
function is the 'index.corrected' measures of fit -- which corrects for over-fitting. We start with 
the default values/arguments for 'validate' which uses the 'boot' method (bootstrapped validation; 
Efron, 1983; Efron & Tibshirani, 1993). Bootstrapped validation takes B number of samples of 
the original data, with replacement, and fits the model to this training set. Then, the original data 
is used as the testing set for validation.  

 

Notice in the output above the index corrected estimates are all marginally worse in terms of fit 
and / or prediction error. In other words, the index corrected measures do not reflect the 
shrinkage caused by over-fitting. The “optimism” (Efron & Tibshirani, 1993, p. 248) is the 
difference between the training set estimates and the test set estimates and can be thought of as 
the amount of optimism of each initial estimate (e.g. how much the training estimates are 
biased).  



Next, we can explore the ‘crossvalidation’ method, which uses B number of observations as the 
testing set (testing or validating the model) and the rest of the sample for the training set 
(building the model).  

 

Next, we can take a look at the “.632” bootstrapped method which corrects for the bias in 
prediction error estimates “based on the fact that bootstrap samples are supported on 
approximately .632n of the original data points” (Efron, 1983; Efron & Tibshirani, 1997, p. 552).  

 

The ‘DAAG’ package 

Another package which is capable of performing cross validation is the Data Analysis And 
Graphing (‘DAAG’) package (Maindonald & Braun, 2011) which also has several dependent 
packages.  



 

The ‘DAAG’ package contains three functions for k – fold cross validation; the ‘cv.lm’ function 
is used for simple linear regression models, the ‘CVlm’ function is used for multiple linear 
regression models, and the ‘CVbinary’ function is used for logistic regression models. The k – 
fold method randomly removes k – folds for the testing set and models the remaining (training 
set) data. Here we use the commonly accepted (Harrell, 1998) 10 – fold application.  



 

Some output (folds) has been omitted. 

 

Here, at the bottom of the output we get the cross validation residual sums of squares (Overall 
MS); which is a corrected measure of prediction error averaged across all folds. The function 
also produces a plot (below) of each fold’s predicted values against the actual outcome variable 
(y); with each fold a different color.  



 

The ‘boot’ package 

Lastly, we can use the ‘boot’ package (Ripley, 2010) for cross validation of generalized linear 
models (e.g. binomial, Gaussian, poisson, gamma, etc.). Bootstrapping can be used to correct for 
some of the bias associated with the other cross validation techniques.  



 

First, we must fit the model. Our example below is really an OLS regression model, but if we 
specify ‘family = gaussian’ then it is the same as using ‘lm’. If we had a logistic model, then we would 
specify ‘family = binomial(link = logit)’ to fit the logistic model.  

 

The ‘cv.glm’ function “estimates the k – fold cross validation prediction error for generalized 
linear models” (Ripley, 2010). If k – fold is set to the number of cases (rows), then a complete 
Leave One Out Cross Validation (LOOCV) is done. The LOOCV method is intuitively named; 
essentially, one case is left out as the testing set and the rest of the data is used as the training set. 
If this process is repeated so that each case is given a chance as the testing case, then we have the 
complete LOOCV method. The 'cv.glm' function returns a 'delta' which shows (first) the raw 
cross-validation estimate of prediction error and (second) the adjusted cross-validation estimate. 
The adjustment is designed to compensate for the bias introduced by not using leave-one-out 
cross-validation. The default for ‘cv.glm’ is complete LOOCV.  

First, we run the common 10 – fold cross validation. Below, the majority of seed information is 
cut off the end of the figure.  



 

Next, we run the complete LOOCV method, specifying k as the number of rows in the sample 
data (nrow). Again, below the majority of the seed numbers have been left off the figure.  

 

Obviously the delta numbers match because we used the LOOCV method. Recall, the first delta 
value is the raw cross validation estimate of prediction error and the second is the adjusted cross 
validation estimate; which is supposed to adjust for the bias of not using the LOOCV method.  

Conclusions 

Three packages were employed to demonstrate some relatively simple examples of conducting 
cross validation in the R programming language environment. Cross validation refers to a group 
of methods for addressing the some over-fitting problems. Over-fitting refers to a situation when 
the model requires more information than the data can provide. One way to induce over-fitting is 
by specifying the model with the same data on which one assesses fit or prediction error. The 
examples here were conducted using simulated data. Rather strikingly, you may have noticed, 
the estimates of prediction error were not terribly different from the full sample (over-fitted) 
estimates, even though this sample was considerable small (n = 100) in comparison to its parent 
population (N = 1,000,000). These results might lead one to think cross validation and over-



fitting are not things one needs to be concerned with. However, there are a few reasons our 
estimates here were not more starkly different than the full sample estimates and you might be 
surprised to find that some of our predictor variables are not at all related to the outcome 
variable. Next month’s article will reveal the secrets behind those statements. However, cross 
validation and over-fitting are serious concerns when dealing with real data and should be 
considered in each study involving modeling.  
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Tune in next time, Same bat channel, same bat time… 


