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This article will, hopefully, be the first installment of several to discuss the related procedures 
used to control or remove the influence of confounder variables. Here, we define confounder 
variables as those which have relationships with the primary variables of interest (e.g. 
moderation, mediation, suppression, etc.). Confounder variables are often identified by the 
research as being important, but not being of primary interest to the study. Confounder variables 
are also sometimes called nuisance variables or covariates. Commonly, demographic variables or 
individual differences (e.g. age, gender, ethnicity, income, etc.) are considered confounders when 
they are not the primary variables of interest because they so often influence other variables. For 
example, age may be a meaningful predictor in a linear model with salary as the outcome; while 
age may be a confounder variable in a model with years of education predicting salary (clearly 
there is likely to be a meaningful relationship between age and salary). Matching and balancing 
are virtually the same; for instance, matching cases of the treatment condition with those from 
the control condition achieves the balance one would expect of a truly random sample being 
truly randomly assigned to the conditions. Clearly then, matching can be used when the design is 
quasi-experimental; meaning random sampling and / or random assignment are lacking. Practical 
constraints often lead to this type of design and therefore, the use of matching should be 
frequently considered. However, matching can also be used when random sampling and random 
assignment have been carried out, to improve or insure balance among the data. 

The ‘MatchIt’ package (Ho, D., Imai, K., King, G., & Stuart, E., 2011) implements a variety of 
methods for performing matching across two groups of a predictor based on the values of cases 
on one or more confounder variables. The resulting balance provides near freedom from some 
parametric assumptions of many common modeling techniques (e.g. linear regression, general 
linear model, generalized linear models, hierarchical linear models, structural equation models, 
etc.). In the regression situation, multicollinearity can be reduced to negligible levels and model 
specification errors can be controlled; meaning the influence of the confounders on the predictor 
of interest can be reduced to a point where the direct effect, or main effect, of the dichotomous 
predictor is independent of confounder influences. As Ho, Imai, King, and Stuart (2007a) state, 
there are three key advantages to using matching prior to parametric causal modeling; ease of 
use, more robust parametric estimated parameters – in terms of model form and specification, 
and reduced bias. The ‘MatchIt’ functions are easy use as they can be incorporated into typical 
data analysis routines prior to the primary parametric analysis(es). Parametric estimates based on 
matched data are more robust to model form and specification errors than raw data parametric 
estimates because the relationship between the dichotomous predictor variable and the 
confounder variable(s) has been controlled (i.e. removed or reduced). Reduced bias results from 



removing the influence of the confounder variables through the matching process; which in turn, 
decreases the chance of violating the assumptions of some parametric modeling techniques. Ho, 
et al. (2007a) also reported that the variance of estimated parameters is reduced when using 
matched data compared to raw data.  

The way the ‘matchit’ function (from the ‘MatchIt’ package) works is dependent upon the 
method of matching used. There are several methods which can be specified by the ‘method’ 
argument. However, the basic principle of matching is to use a multivariate distance measure 
(e.g. Mahalanobis distance) to identify cases in the control and treatment groups which 
responded in the same or similar ways on the confounder variables. Cases which are not matched 
will be discarded and replaced with replications of cases which were matched. Therefore, sample 
size remains the same as the original data.   

Examples 

First, read in the example data from the web naming it “data.df”, get a summary, and take note of 
the number of rows (nrow). This data is simulated and was created specifically as an example for 
discussing matching in a regression situation. In the summary output notice that all variables are 
numeric; although the dichotomous grouping variable (0 = control & 1 = treatment) is g1. The 
covariates (confounder variables) are c1 and c2; with c1 being dichotomous and c2 being 
continuous. The continuous outcome variable is y1. Both x2 and x3 are continuous predictors of 
y1 along with the grouping variable (g1); but x2 and x3 are not related to g1, c1, or c2.  
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Until next time; everything is made of dreams… 
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