
How to Identify and Impute Multiple Missing Values using R.  
 
By Dr. Jon Starkweather  
Research and Statistical Support consultant 
 

 
As with many functions or tasks in R, there are a great many ways to accomplish the goals of identifying, 
displaying, and imputing multiple missing values. The following article discusses only a few ways to identify, 
display, and impute missing values using three packages in the statistical software R. For those new to R, I 
would suggest reviewing the Research and Statistical Support (RSS) Do-it-Yourself (DIY) Introduction to R 
short course. A script file containing all the commands used in this article can be found here. 
 
1. Identify and Display Missing Values. 
 
Generally speaking, R identifies missing values with NA. So, running a simple summary(x) where ‘x’ is the 
data frame will provide the number of NA’s (missing values) for the variable(s). Several examples of the 
‘summary’ function are listed throughout this article.  
 
1.1. The VIM package 
 
The Visualization and Imputation of Missing values package (VIM; Templ, Alfons, & Kowarik, 2010a; Templ, 
Alfons, & Kowarik, 2010b), provides several functions for identifying and displaying missing data. It provides 
some very intuitive graphical displays which allow the user to easily identify missing data. Missing data is often 
displayed in bright red on otherwise grayscale or blue figures. When you load the package, you’ll notice two 
things. First, it has several dependencies and second, it has its own Graphical User Interface (GUI). Generally, I 
do not use the GUI and instead rely on script which I simply prefer.  
 

 
 



 
 
The function ‘aggr’ aggregates missing data and can be used to count or plot the amount of missing-ness for 
each variable as well as some combinations of variables. Use the examples provided in the documentation to 
replicate what is provided below (Templ, Alfons, & Kowarik, 2010a).  
 
> data(sleep) 
> a <- aggr(sleep) 
> a 
 
 Missings in variables: 
 Variable Count 
     NonD    14 
    Dream    12 
    Sleep     4 
     Span     4 
     Gest     4 
> 
 
You will also notice the graphical display which shows the proportion of missing-ness for each variable as well 
as some combinations (displayed below) 
 



 
 
The function ’barMiss’ can be used to produce bar charts which display the proportion of missing values of 
each variable using the color red in the lower part of each bar, the upper portions are displayed in blue.  
 
> data(sleep) 
> x <- sleep[, c(“Exp, “Sleep”)] 
> summary(x) 
      Exp            Sleep 
 Min.   :1.000   Min.   : 2.60 
 1st Qu.:1.000   1st Qu.: 8.05 
 Median :2.000   Median :10.45 
 Mean   :2.419   Mean   :10.53 
 3rd Qu.:4.000   3rd Qu.:13.20 
 Max.   :5.000   Max.   :19.90 
                 NA’s   : 4.00 
> barMiss(x) 
 
Click in the left margin to switch to the previous variable or in the 
right margin to switch to the next variable. To regain use of the VIM GUI 
and the R console, click anywhere else in the graphics window. 
 
> 
 



 
 
 
The ‘histMiss’ function performs the same way the ‘barMiss’ function does but, obviously with histograms 
instead of bar graphs.  
> data(tao) 
> y <- tao[, c(“Air.Temp”, “Humidity”)] 
> summary(y) 
    Air.Temp        Humidity 
 Min.   :21.42   Min.   :71.60 
 1st Qu.:23.26   1st Qu.:81.30 
 Median :24.52   Median :85.20 
 Mean   :25.03   Mean   :84.43 
 3rd Qu.:27.08   3rd Qu.:88.10 
 Max.   :28.50   Max.   :94.80 
 NA’s   :81.00   NA’s   :93.00 
> histMiss(y) 
 
Click in the left margin to switch to the previous variable or in the 
right margin to switch to the next variable. To regain use of the VIM GUI 
and the R console, click anywhere else in the graphics window. 
 
> 



 
 

 
 



The function ‘marginmatrix’ creates a scatter plot matrix with information about missing values in the plot 
margins of each panel. In the margins box plots in blue represent the (non-missing) data. Single variable scatter 
plots and boxplots in red represent missing data and are located along the axis for each variable.  
> data(sleep) 
> z <- sleep[, 1:5] 
> z[,c(1,2,3)] <- log10(z[,c(1,2,3)]) 
> summary(z) 
    BodyWgt           BrainWgt         NonD           Dream 
 Min.   :-2.3010   Min.   :-0.8539   Min.   : 0.3222   Min.   : 0.000 
 1st Qu.:-0.2260   1st Qu.: 0.6263   1st Qu.: 0.7958   1st Qu.: 0.900 
 Median : 0.5240   Median : 1.2367   Median : 0.9217   Median : 1.800 
 Mean   : 0.5809   Mean   : 1.3638   Mean   : 0.8927   Mean   : 1.972 
 3rd Qu.: 1.6781   3rd Qu.: 2.2199   3rd Qu.: 1.0414   3rd Qu.: 2.550 
 Max.   : 3.8231   Max.   : 3.7568   Max.   : 1.2529   Max.   : 6.600 
                                     NA’s   :14.0000   NA’s   :12.000 
    Sleep 
 Min.   : 2.60 
 1st Qu.: 8.05 
 Median :10.45 
 Mean   :10.53 
 3rd Qu.:13.20 
 Max.   :19.90 
 NA’s   : 4.00 
> marginmatrix(z) 
> 
 



 
 
 
The function ‘marginplot’ performs essentially the same operation as ‘marginmatrix’ but for a standard two 
variable scatter plot – which makes it much easier to see and interpret. The red numbers (81 & 93) are the 
number of missing values for each variable; the single number in the lower right-most panel represents the 
number of cases which are missing values for both variables.  
> data(tao) 
> marginplot(tao[,c(“Air.Temp”, “Humidity”)]) 
> 
 



 
 
The function ‘matrixplot’ creates a color matrix plot in which the data cells are represented by a colored 
rectangle. Each cell is color coded along a continuum from white to black by default and missing data cells are 
given a clearly recognizable color (i.e. bright red by default). The data matrix plot can also be sorted by clicking 
inside the plot space on the variable’s column which you want to sort by.  
> data(sleep) 
> b <- sleep[, -(8:10)] 
> b[,c(1,2,4,6,7)] <- log10(b[,c(1,2,4,6,7]) 
> matrixplot(b, sortby = “BrainWgt”) 
 
Click in a column to sort by the corresponding variable. 
To regain use of the VIM GUI and the R console, click outside the plot 
region. 
 
Warning message: 
In matrixplot(b, sortby = “BrainWgt”) : 
  variable ‘Dream’ contains infinite values    
> 
 



 
 
 
2. Imputation Techniques for Missing Values. 
 
2.1 The VIM Package. 
 
The VIM package can also be used to do multiple imputation using the ‘irmi’ function which does what it 
stands for, Iterative Robust Model-based Imputation. The function runs iterative regression analysis in which 
each iteration uses one variable as an outcome and the remaining variables as predictors. If the outcome has any 
missing values, the predicted values from the regression are imputed. Iterations end when all variables in the 
data frame have served as an outcome. Again, using the package documentation provided examples allows a 
brief introduction to the function (Templ, Alfons, & Kowarik, 2010a). Notice below, the variables 
Sea.Surface.Temp, Air.Temp, and Humidity all have missing values.  
> data(tao) 
> summary(tao) 
      Year         Latitude        Longitude      Sea.Surface.Temp 
 Min.   :1993   Min.   :-5.000   Min.   :-110.0   Min.   :21.60 
 1st Qu.:1993   1st Qu.:-2.000   1st Qu.:-110.0   1st Qu.:23.50 
 Median :1995   Median :-1.000   Median :-102.2   Median :26.55 
 Mean   :1995   Mean   :-1.375   Mean   :-102.5   Mean   :25.86 
 3rd Qu.:1997   3rd Qu.: 0.000   3rd Qu.: -95.0   3rd Qu.:28.21 
 Max.   :1997   Max.   : 0.000   Max.   : -95.0   Max.   :30.17 
                                                   NA’s  : 3.00 
    Air.Temp         Humidity        UWind           VWind 
 Min.   :21.42   Min.   :71.60   Min.   :-8.100   Min.   :-6.200 
 1st Qu.:23.26   1st Qu.:81.30   1st Qu.:-5.100   1st Qu.: 1.500 
 Median :24.52   Median :85.20   Median :-3.900   Median : 2.900    



 Mean   :25.03   Mean   :84.43   Mean   :-3.716   Mean   : 2.636    
 3rd Qu.:27.08   3rd Qu.:88.10   3rd Qu.:-2.600   3rd Qu.: 4.100    
 Max.   :28.50   Max.   :94.80   Max.   : 4.300   Max.   : 7.300    
 NA’s   :81.00   NA’s   :93.00 
> imputed.tao <- irmi(tao) 
> summary(imputed.tao) 
      Year         Latitude        Longitude      Sea.Surface.Temp 
 Min.   :1993   Min.   :-5.000   Min.   :-110.0   Min.   :21.60 
 1st Qu.:1993   1st Qu.:-2.000   1st Qu.:-110.0   1st Qu.:23.50 
 Median :1995   Median :-1.000   Median :-102.2   Median :26.43 
 Mean   :1995   Mean   :-1.375   Mean   :-102.5   Mean   :25.86 
 3rd Qu.:1997   3rd Qu.: 0.000   3rd Qu.: -95.0   3rd Qu.:28.21 
 Max.   :1997   Max.   : 0.000   Max.   : -95.0   Max.   :30.17 
    Air.Temp         Humidity        UWind           VWind 
 Min.   :21.42   Min.   :71.60   Min.   :-8.100   Min.   :-6.200 
 1st Qu.:23.38   1st Qu.:81.60   1st Qu.:-5.100   1st Qu.: 1.500 
 Median :25.11   Median :85.30   Median :-3.900   Median : 2.900 
 Mean   :25.26   Mean   :84.71   Mean   :-3.716   Mean   : 2.636 
 3rd Qu.:27.15   3rd Qu.:88.20   3rd Qu.:-2.600   3rd Qu.: 4.100 
 Max.   :29.08   Max.   :95.89   Max.   : 4.300   Max.   : 7.300 
> 
 
2.2. The Amelia Package. 
 
Another way of dealing with missing data is to use the Amelia package. The Amelia package (Honaker, King, 
& Blackwell, 2010a) is specifically designed to do multiple imputation on a variety of data types, as long as the 
data is in a matrix or data frame. The imputation function is the ‘amelia’ function, which creates new data sets 
which include multiple imputation of incomplete multivariate data values in place of missing values by running 
a bootstrapped EM algorithm. The ‘amelia’ function has a variety of optional arguments, including the ability to 
provide an initial priors matrix and bounds for missing values. Working with the documentation provided 
examples offers a brief introduction to the function (Honaker, et al., 2010a).  
> library(Amelia) 
Loading required package: foreign 
## 
## Amelia II: Multiple Imputation 
## (Version 1.2-18, built: 2010-11-04) 
## Copyright (C) 2005-2010 James Honaker, Gary King and Matthew Blackwell 
## Refer to http://gking.harvard.edu/amelia/ for more information 
## 
> data(africa) 
> summary(africa) 
      year              country       gdp_pc            infl 
 Min.   :1972   Burkina Faso:20   Min.   : 376.0   Min.   : -8.400 
 1st Qu.:1977   Burundi     :20   1st Qu.: 513.8   1st Qu.:  4.760 
 Median :1982   Cameroon    :20   Median :1035.5   Median :  8.725 
 Mean   :1982   Congo       :20   Mean   :1058.4   Mean   : 12.753 
 3rd Qu.:1986   Senegal     :20   3rd Qu.:1244.8   3rd Qu.: 13.560 
 Max.   :1991   Zambia      :20   Max.   :2723.0   Max.   :127.890 
                                  NA’s   :   2.0 
     trade            civlib         population 
 Min.   : 24.35   Min.   :0.0000   Min.   : 1332490 
 1st Qu.: 38.52   1st Qu.:0.1667   1st Qu.: 4332190 



 Median : 59.59   Median :0.1667   Median : 5853565 
 Mean   : 62.60   Mean   :0.2889   Mean   : 5765594 
 3rd Qu.: 81.16   3rd Qu.:0.3333   3rd Qu.: 7355000 
 Max.   :134.11   Max.   :0.6667   Max.   :11825390 
 NA’s   :  5.00 
> 
Next, we can use the ‘amelia’ function to create the new data set(s). Notice the summary (below) tells us there 
were “5 imputed datasets” created. We could increase the number of data sets created by changing ‘m=5’ 
(default) to whatever number of data sets we wanted; however, Honaker, King, and Blackwell (2010b) state 
“unless the rate of missing-ness is very high, m = 5 (the program default) is probably adequate” (p. 4).  
> a.out <- amelia(x=africa,m=5,cs=”country”,ts=”year”,logs=”gdp_pc”) 
-- Imputation 1 -- 
 
1 2  3 

 
-- Imputation 2 -- 
 
 1  2  3 
 
-- Imputation 3 -- 
 
 1  2 
 
-- Imputation 4 -- 
 
 1  2  3  4 
 
-- Imputation 5 -- 
 
 1  2 
 
> summary(a.out) 
 
Amelia output with 5 imputed datasets. 
Return code:  1 
Message:  Normal EM convergence. 
 
Chain Lengths: 
-------------- 
Imputation 1:  3 
Imputation 2:  3 
Imputation 3:  2 
Imputation 4:  4 
Imputation 5:  2 
 
Rows after Listwise Deletion:  115 
Rows after Imputation:  120 
Pattern of missingness in the data:  3 
 
Fraction Missing for individual variables: 
----------------------------------------- 
 



          Fraction Missing 
year            0.00000000 
country         0.00000000 
gdp_pc          0.01666667 
infl            0.00000000 
trade           0.04166667 
civlib          0.00000000 
population      0.00000000 
> plot(a.out) 
> 
 

 
 
Next, we can write the data sets created and store them (by default) in our working directory. The following 
function ‘write.amelia’ takes all the imputed data sets created using the ‘amelia’ function and writes them as 
new data files. In this case, specified with the names: “africa.outdata1.csv”, “africa.outdata1.csv”, 
“africa.outdata3.csv”, “africa.outdata4.csv”, and “africa.outdata5.csv”. The ‘csv’ extension refers to comma 
separated values which is a form of text (.txt) data file with values separated by commas.  
> write.amelia(a.out,”africa.outdata”,extension=NULL,format=”csv”) 
> 
Now we can load any of these 5 new data sets into R from the working directory. Generally, the last iteratively 
produced data set offers the best estimates of the missing values/data because; it is based on the previous 
estimates (i.e. priors). 
> a.out5 <- read.table(“C:/Documents and Settings/user/Desktop/WorkStuff/ 
            africa.outdata5”,header=TRUE,sep=”,”,na.strings=”NA”,dec=”.”, 
            strip.white=TRUE) 
> 



Now, we can perform a summary to take a look at how the missing values may have changed the central 
tendency and or distribution of the variables.  
> summary(a.out5) 
> 
       X               year              country       gdp_pc       
 Min.   :  1.00   Min.   :1972   Burkina Faso:20   Min.   : 376.0    
 1st Qu.: 30.75   1st Qu.:1977   Burundi     :20   1st Qu.: 511.8    
 Median : 60.50   Median :1982   Cameroon    :20   Median :1015.5    
 Mean   : 60.50   Mean   :1982   Congo       :20   Mean   :1048.6    
 3rd Qu.: 90.25   3rd Qu.:1986   Senegal     :20   3rd Qu.:1232.2    
 Max.   :120.11   Max.   :1991   Zambia      :20   Max.   :2723.0    
      infl             trade            civlib         population 
 Min.   : -8.400   Min.   : 24.35   Min.   :0.0000   Min.   : 1332490 
 1st Qu.:  4.760   1st Qu.: 38.41   1st Qu.:0.1667   1st Qu.: 4332190 
 Median :  8.725   Median : 58.84   Median :0.1667   Median : 5853565 
 Mean   : 12.753   Mean   : 61.52   Mean   :0.2889   Mean   : 5765594 
 3rd Qu.: 13.560   3rd Qu.: 80.79   3rd Qu.:0.3333   3rd Qu.: 7355000 
 Max.   :127.890   Max.   :134.11   Max.   :0.6667   Max.   :11825390 
> 
 
2.3. The mvnmle Package. 
 
Another way of dealing with missing data involves using the ‘mvnmle’ package (Gross & Bates, 2009) to create 
a complete variance/covariance matrix which will include maximum likelihood estimates for missing values. 
Notice, this is very different from the previous two methods. The previous methods were concerned with 
retrieving a new (imputed) data file. The mvnmle method is concerned only with a complete 
variance/covariance matrix based on maximum likelihood values imputed where previously missing values 
existed. This can be useful for some multivariate analysis (e.g. structural equation modeling, principal 
components analysis, etc.). Again we will be using the examples provided in the package documentation (Gross 
& Bates, 2009).  
> library(mvnmle) 
> data(apple) 
> summary(apple) 
      size           worms 
 Min.   : 4.00   Min.   :27.00 
 1st Qu.: 6.50   1st Qu.:38.75 
 Median :12.50   Median :44.00 
 Mean   :14.72   Mean   :45.00 
 3rd Qu.:21.25   3rd Qu.:53.75 
 Max.   :40.00   Max.   :59.00 
                 NA’s   : 6.00 
Take a look at the covariance matrix for ‘apple’. 
> cov(apple) 
         size worms 
size  94.8065    NA 
worms      NA    NA          
> 
Notice that because of the 6 missing values on the variable ‘worms’ we get ‘NA’ for 3 of the 4 entries of the 
variance/covariance matrix. We can conduct the multiple imputation using the ‘mlest’ function, which applies 
maximum likelihood estimates for missing values so that the variance/covariance matrix can be computed.  
> mlest(apple) 
$muhat 



[1] 14.72227 49.33325 
 
$sigmahat 
          [,1]      [,2] 
[1,]  89.53415 -90.69653 
[2,] -90.69653 114.69470 
 
$value 
[1] 148.4350 
 
$gradient 
[1]  4.996200e-06  2.891530e-06  9.105833e-07  1.684765e-05  -1.073488-04 
 
$hessian 
NULL 
 
$stop.code 
[1] 1 
 
$iterations 
[1] 34 
 
> 
To extract only the variance/covariance matrix and assign it a name (imputed.cov.apple): 
> imputed.cov.apple <- mlest(apple)$sigmahat 
> imputed.cov.apple 
          [,1]      [,2] 
[1,]  89.53415 -90.69653 
[2,] -90.69653 114.69470 
Then, this matrix can be sent to another function for the primary analysis.  
 
2.4. The SeqKnn and rrcovNA Packages. 
 
Finally, another way of dealing with missing data is the k nearest neighbor (knn) approach. This method is quite 
simple in principle but is effective and often preferred over some of the more sophisticated methods described 
above. Nearest neighbors are records that have similar completed data patterns; the average of the k-nearest 
neighbor’s completed data are used to impute the value for a variable that is missing it’s value (where k can be 
set by the analyst or R user). Hastie, et al., (1999) have shown a k ranging from 5 to 10 is adequate. The 
advantage of the knn approach is that it assumes data are missing at random (MAR) meaning, missing data only 
depends on the observed data; which in turn means, the knn approach is able to take advantage of multivariate 
relationships in the completed data. The disadvantage of this approach is it does not include a component to 
model random variation; consequently uncertainty in the imputed value is underestimated. As an example of the 
simplicity of the knn approach, consider the following: 
 
Data frame: 
----------------------------------------------- 
case v1 v2 v3 v4 v5 v6 
 1      3  3  4  3  4  4 -| 
 2      3  3  4  3  4  4  |- 4 nearest  
 3      3  2  4  4  4  4  |    neighbors 
 4      3  2  4  4  4  4 -| 
 5      3  2  4  ?  4  4 --- missing v3 



------------------------------------------------  
 5      3  2  4  ?  4  4 before imputation  
 5      3  2  4 3.5 4  4 after imputation 
                      | 
            imputed value 
 
To implement the knn approach in R, Kim and Yi (2009) have made available the ‘SeqKnn’ package, which 
performs a sequential knn procedure using the ‘SeqKnn’ function. Again, using the example provided in the 
package documentation offers a quick introduction to the function. It is a simple function which simply uses the 
data name (matrix or data frame) and k = the user defined number of nearest neighbors (k = 10 below).  
> library(SeqKnn) 
> data(khan05) 
> imputed.k05 <- SeqKNN(khan05,10) 
2208 
> 
Summaries were not included above because; the khan05 dataset has 64 variables and the summary outputs 
would fill an unnecessary amount of space in this article. To get the summaries for comparison, simply type:  
summary(khan05) 
summary(imputed.k05) 
 
The package ‘rrcovNA’ (Todorov, 2010) also has a function for conducting sequential nearest neighbor 
imputation (‘impSeq’), as well as a function (‘impSeqRob’) which is a robust variant of the former. Similar to 
the ‘SeqKNN’ in terms of simplicity, the function ‘impSeq’ simply requires the data in matrix or data frame 
format. The difference between the ‘impSeq’ function and the ‘SeqKNN’ from above is the manner in which 
distances between neighboring cases are determined. The ‘SeqKNN’ function uses Euclidean distances while 
‘impSeq’ uses statistical measures of distance (mean & covariance). In the case of ‘impSeqRob’ the distances 
are determined by robust estimates of location and scatter. The ‘rrcovNA’ package requires several other 
packages (listed below in the output). Again, using the examples provided in the library documentation shows 
how easy it is to use these functions.  
> library(rrcovNA) 
Loading required package: rrcov 
Loading required package: robustbase 
Loading required package: pcaPP 
Loading required package: mvtnorm 
Scalable Robust Estimators with High Breakdown Point (version 1.1-00) 
Loading required package: norm 
Scalable Robust Estimators with High Breakdown Point for 
Incomplete Data (version 0.3-00) 
> data(bush10) 
> summary(bush10) 
       V1               V2              V3              V4        
 Min.   : 78.00   Min.   : 66.0   Min.   : 10.0   Min.   :110.0   
 1st Qu.: 88.00   1st Qu.:108.5   1st Qu.:185.5   1st Qu.:200.0   
 Median : 94.00   Median :137.0   Median :260.5   Median :215.0   
 Mean   : 99.85   Mean   :130.3   Mean   :278.1   Mean   :230.6   
 3rd Qu.:112.00   3rd Qu.:155.2   3rd Qu.:378.5   3rd Qu.:246.0   
 Max.   :146.00   Max.   :181.0   Max.   :577.0   Max.   :344.0   
 NA's   :  5.00   NA's   :  2.0   NA's   :  6.0   NA's   :  5.0   
       V5        
 Min.   :188.0   
 1st Qu.:260.0   
 Median :273.0   



 Mean   :284.1   
 3rd Qu.:301.0   
 Max.   :380.0 
Below is an example of the standard ‘impSeq’ function. 
> imputed.b10 <- impSeq(bush10) 
> summary(imputed.b10) 
       V1               V2              V3              V4        
 Min.   : 78.00   Min.   : 66.0   Min.   : 10.0   Min.   :110.0   
 1st Qu.: 88.25   1st Qu.:105.5   1st Qu.:187.2   1st Qu.:193.1   
 Median :100.50   Median :137.0   Median :252.9   Median :213.5   
 Mean   :102.92   Mean   :129.7   Mean   :288.9   Mean   :227.8   
 3rd Qu.:113.00   3rd Qu.:155.0   3rd Qu.:379.5   3rd Qu.:246.0   
 Max.   :146.00   Max.   :181.0   Max.   :599.7   Max.   :344.0   
       V5        
 Min.   :188.0   
 1st Qu.:260.5   
 Median :274.5   
 Mean   :286.6   
 3rd Qu.:301.0   
 Max.   :380.0 
Below is an example of the robust sequential imputation, ‘impSeqRob’ function with the default value of alpha 
shown. Also notice when retrieving the imputed data from the output of the ‘impSeqRob’ function, you must 
apply a dollar sign and x to the name you provided (dataname$x). 
> rob.imputed.b10 <- impSeqRob(bush10, alpha=0.9) 
> summary(rob.imputed.b10$x) 
       V1               V2              V3              V4        
 Min.   : 73.39   Min.   : 66.0   Min.   : 10.0   Min.   :110.0   
 1st Qu.: 88.00   1st Qu.:105.5   1st Qu.:189.3   1st Qu.:192.7   
 Median : 97.00   Median :137.0   Median :255.6   Median :213.5   
 Mean   :102.73   Mean   :129.2   Mean   :288.9   Mean   :227.5   
 3rd Qu.:113.00   3rd Qu.:155.0   3rd Qu.:379.5   3rd Qu.:246.0   
 Max.   :156.85   Max.   :181.0   Max.   :589.4   Max.   :344.0   
       V5        
 Min.   :188.0   
 1st Qu.:260.5   
 Median :274.5   
 Mean   :286.6   
 3rd Qu.:301.0   
 Max.   :380.0 
> 
 
3. Conclusions 
 
Keep in mind; the techniques discussed in this article represent a very small percentage of the available methods 
for identifying, displaying, and imputing missing values. A partial list of packages implementing various 
functions to handle missing values and missing value imputations is given below (below the References and 
Resources section). Additionally, the CRAN Multivariate Task View (Hewson, 2010) has a listing of several 
packages and what they can do for missing data. Also notice that most of the packages discussed above contain 
more functions than the ones reviewed here. Lastly, there are some limitations to the techniques discussed 
above. Most assume the data are multivariate normal. Also, the mlest function is limited to 50 variables or less.  
 
Until next time; you may say I’m a dreamer, but I’m not the only one… 



 
4. References and Resources 
 
Gross, K., & Bates, D. (2009). Package ‘mvnmle’. Available at: 
http://cran.r-project.org/web/packages/mvnmle/mvnmle.pdf 
 
Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P. and Botstein, D., Imputing Missing Data for Gene 
Expression Arrays, Stanford University Statistics Department Technical report (1999),  
http://www-stat.stanford.edu/~hastie/Papers/missing.pdf 
 
Hewson, P. (2010). CRAN Task View: Multivariate Statistics. Available at: 
http://cran.r-project.org/web/views/Multivariate.html 
 
Honaker, J., King, G., & Blackwell, M. (2010a). Package ‘Amelia’. Available at: 
http://cran.r-project.org/web/packages/Amelia/Amelia.pdf 
 
Honaker, J., King, G., & Blackwell, M. (2010b). Package ‘Amelia’ vignette. Available at: 
http://cran.r-project.org/web/packages/Amelia/vignettes/amelia.pdf 
 
Kim, K., & Yi, G. (2009). Package ‘SeqKnn’. Available at: 
http://cran.r-project.org/web/packages/SeqKnn/SeqKnn.pdf 
 
Templ, M., Alfons, A., & Kowarik, A. (2010a). Package ‘VIM’. Available at: 
http://cran.r-project.org/web/packages/VIM/VIM.pdf 
 
Templ, M., Alfons, A., & Kowarik, A. (2010a). Package ‘VIM’ vignette. Available at: 
http://cran.r-project.org/web/packages/VIM/vignettes/VIM-EU-SILC.pdf 
 
Templ, M. (2010). CRAN Task View: Official Statistics & Survey Methodology. Available at: 
http://cran.r-project.org/web/views/OfficialStatistics.html 
 
Todorov, V. (2010). Package ‘rrcovNA’. Available at: 
http://cran.r-project.org/web/packages/rrcovNA/rrcovNA.pdf 
 
5. Packages implementing various functions to handle missing values and missing value 
imputations (note: this is only a partial list): 
 
Amelia 
arrayImpute 
bcv 
cat 
crank 
CVThresh 
crank 
compositions 
Design 
dprep 
eigenmodel 
EMV 
FAwR 
Hmisc 



impute 
imputeMDR 
MADAM 
mclust 
Mfuzz 
mi 
mitools 
mice 
missMDA 
mimR 
mix 
mix 
MImix 
MIfuns 
monomvn 
mvnmle 
norm 
nnc 
optmatch 
pan 
pcaMethods 
prabclus 
rama 
randomForest 
rconfifers 
relaimpo 
robCompositions 
rrp 
scrime 
SDisc 
simsalabim 
VIM 
vmv 
yaImpute 


