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Reference category and interpreting regression
coefficients in R.

The primary purpose of this article is to illustrate the interpretation of categorical variables as predic-
tors and outcome in the context of traditional regression and logistic regression. First, we must under-
stand how R identifies categorical variables. The R languageidentifies categorical variables as ‘factors’
which can be ‘ordered’ or not. Throughout this article we will be dealing with unordered factors (i.e.
strictly discrete categorical variables). The categoriesof a factor are identified as ‘levels’ of the factor. A
‘reference’ category is so named and identified as a categoryof comparison for the other categories. In
other words, the other categories arecompared to the reference. By default R uses the alpha-numerically
first category as the reference category (e.g. “a” with letters, “0” with numbers). Consider the factor
‘x1’ below, which is created by replicating the first four letters of the alphabet three times. It has four
levels: “a”, “b”, “c”, and “d”. The reference category, which was not user-specified, is “a” because it is
alphabetically first of the levels.

x1 <- factor(rep(letters[1:4], 3))
x1
[1] a b c d a b c d a b c d
Levels: a b c d
summary(x1)
a b c d
3 3 3 3
levels(x1)
[1] "a" "b" "c" "d"

We can set a specific reference category by explicitly placing one of the levels first when specifying the
levels. We order the levels so whatever level is first will be the one we want as a reference. Below, we
use ‘x1’ to create a new factor, ‘x2’ and specify the levels sothat “d” is the reference category. It is
important to note that the values of ‘x1’ and ‘x2’ are identical, only the reference category is different.

x2 <- factor(x1, levels = c("d","a","b","c"))
x2
[1] a b c d a b c d a b c d
Levels: d a b c
summary(x2)
d a b c
3 3 3 3
levels(x2)
[1] "d" "a" "b" "c"

Next, we create a numeric outcome variable, ‘y’ such that thevalues will correlate with the values of
‘x2’. We then demonstrate that by regressing ‘x2’ onto ‘y’.

y <- c(1.1, 2.1, 3.1, 4.1, 1.5, 2.5, 3.5, 4.5, 1.9, 2.9, 3.9, 4.9)
summary(lm(y ˜ x2))
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Call:
lm(formula = y ˜ x2)

Residuals:
Min 1Q Median 3Q Max

-0.4 -0.4 0.0 0.4 0.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5000 0.2309 19.486 5.00e-08 ***
x2a -3.0000 0.3266 -9.186 1.59e-05 ***
x2b -2.0000 0.3266 -6.124 0.000282 ***
x2c -1.0000 0.3266 -3.062 0.015539 *
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.4 on 8 degrees of freedom
Multiple R-squared: 0.9214, Adjusted R-squared: 0.8919
F-statistic: 31.25 on 3 and 8 DF, p-value: 9.103e-05

So, looking at the ‘x2’ model, directly above; we see that themean (y-value) of category, or level, “a”
is 3.0 units less than the mean (y-value) of “d” (which is listed as the intercept). Likewise, the mean of
“b” is 2.0 units less than the mean of “d” and the mean of “c” is 1.0 units less than the mean of “d” –
because “d” is the reference category in the linear regression and the negative coefficients represent the
“less than” in the interpretation. Thet-test is simply testing if the difference between, say the category
‘a’ coefficient and the reference category, ‘d’ is differentthan zero: 4.50 - 1.50 = -3.00; is that absolute
difference greater than zero? Yes,p = 0.0000159. To see all the coefficients, we can run a no-intercept
model or simply plot the two variables.

summary(lm(y ˜ 0 + x2))

Call:
lm(formula = y ˜ 0 + x2)

Residuals:
Min 1Q Median 3Q Max

-0.4 -0.4 0.0 0.4 0.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x2d 4.5000 0.2309 19.486 5.00e-08 ***
x2a 1.5000 0.2309 6.495 0.000189 ***
x2b 2.5000 0.2309 10.825 4.68e-06 ***
x2c 3.5000 0.2309 15.155 3.56e-07 ***
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 0.4 on 8 degrees of freedom
Multiple R-squared: 0.9897, Adjusted R-squared: 0.9846
F-statistic: 192.2 on 4 and 8 DF, p-value: 5.58e-08

plot(x2, y)

To interpret all four coefficients (listed in the ‘no-intercept’ model)...we would say that all cases with
a value of “d” on ‘x2’ would be predicted to have a value of 4.5 on ‘y’ because, that is the average of
the “d” cases on ‘y’. So the coefficients for this model are theaverage outcome variable value for the
category (or level) of the predictor variable. Thet-tests are simply testing whether the coefficients are
different than zero (here, all four are).

Logistic Regression.

In this article the term logistic regression (Cox, 1958) willbe used for binary logistic regression rather
than also including multinomial logistic regression. Logistic regression is used to regress categorical
and numeric variables onto a binary outcome variable. This is accomplished by transforming the raw
outcome values into probability (for one of the two categories), odds or odds ratio, and log odds (literally
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the ‘log’ of the odds / odds ratio). The log odds of the non-reference category are referred to as the
logit; that is what is being predicted. To understand the logistic regression, one must have an idea of the
relationships between the probability, odds, and log odds or logit.

prob <- c(.001,.01,.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8,.85,.9,.95,.99,.999)
odds <- round(prob/(1-prob), 4)
logodds <- round(log(odds), 4)
logit.df <- data.frame(prob,odds,logodds)
rm(prob,odds,logodds)
logit.df

prob odds logodds
1 0.001 0.0010 -6.9078
2 0.010 0.0101 -4.5952
3 0.050 0.0526 -2.9450
4 0.100 0.1111 -2.1973
5 0.150 0.1765 -1.7344
6 0.200 0.2500 -1.3863
7 0.250 0.3333 -1.0987
8 0.300 0.4286 -0.8472
9 0.350 0.5385 -0.6190
10 0.400 0.6667 -0.4054
11 0.450 0.8182 -0.2006
12 0.500 1.0000 0.0000
13 0.550 1.2222 0.2007
14 0.600 1.5000 0.4055
15 0.650 1.8571 0.6190
16 0.700 2.3333 0.8473
17 0.750 3.0000 1.0986
18 0.800 4.0000 1.3863
19 0.850 5.6667 1.7346
20 0.900 9.0000 2.1972
21 0.950 19.0000 2.9444
22 0.990 99.0000 4.5951
23 0.999 999.0000 6.9068

As the data frame above illustrates, the probability rangesbetween zero and one. The odds or odds ratio
ranges between zero and 1000. The log odds range between negative infinity and positive infinity. The
transformation between log odds and probability is direct and allows us to interpret a logistic regres-
sion in terms of the predicted probabilitywhen the model includes only one predictor. When the model
contains more than one predictor variable, the transformation is no longer straight forward because the
predicted probability of the non-reference category (and,of course, that of the reference category) is
based upon all predictors’ coefficients. Below, a binary outcome variable is created. It is a factor with
two levels; “0” and “s” with “0” specified as the reference category.

f <- factor(c("0","0","s","s","0","0","s","0","0","0","0","s"),
levels = c("0","s"))
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f
[1] 0 0 s s 0 0 s 0 0 0 0 s
Levels: 0 s
summary(f)
0 s
8 4
levels(f)
[1] "0" "s"

Now, let’s look at a binomial generalized linear model (GLM). First, start with the simplest version, an
intercept only model.

summary(glm(f ˜ 1, family = "binomial"))

Call:
glm(formula = f ˜ 1, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9005 -0.9005 -0.9005 1.4823 1.4823

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6931 0.6124 -1.132 0.258

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.276 on 11 degrees of freedom
Residual deviance: 15.276 on 11 degrees of freedom
AIC: 17.276

Number of Fisher Scoring iterations: 4

The above model produces one coefficient, the intercept term, which can be interpreted as the log odds
of predicting the non-reference category. Here, the reference category is “0” and the non-reference cat-
egory is “s”. We can then take the log odds coefficient and back-transform it into the probability of “s”.
We have no information for this model, only the outcome variable which has only 4 values of “s” and 8
values of “0”.

exp(-.6931)/(1+exp(-.6931))
[1] 0.3333438

So, just looking at the outcome we see 4 of 12 values are “s” and4 divided by 12 equals .3333. Next,
what happens when we introduce a numeric predictor term?

X3 <- y
summary(glm(f ˜ x3, family = "binomial"))
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Call:
glm(formula = f ˜ x3, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5920 -0.6181 -0.3540 0.7362 1.5796

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9954 2.8916 -1.728 0.0841 .
x3 1.3182 0.8052 1.637 0.1016
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.276 on 11 degrees of freedom
Residual deviance: 11.197 on 10 degrees of freedom
AIC: 15.197

Number of Fisher Scoring iterations: 5

The intercept coefficient is the log odds of someone with a ‘x3’ value of zero having a ‘f’ value of “s”
(i.e. the non-reference category of the outcome variable).We can translate log odds into just odds or
even probability (of “s”), both of which are extremely small; but, not the same value.

exp(-4.9954)
[1] 0.006769013
exp(-4.9954)/(1+exp(-4.9954))
[1] 0.006723501

A typical logistic regression coefficient (i.e. the coefficient for a numeric variable) is the expected amount
of change in the logit for each unit change in the predictor. The logit is what is being predicted; it is the
log odds of membership in the non-reference category of the outcome variable value (here “s”, rather
than “0”). The closer a logistic coefficient is to zero, the less influence it has in predicting the logit. So,
for every unit change in ‘x3’, we expect the log odds (or logit) to increase by 1.3182. So, to put the
logistic coefficient in context, consider the equation of our model: logit = -4.9954 + (1.3182*x3). If we
give ‘x3’ a value, say 5.0 then we get:

-4.9954 + (1.3182 * 5.0)
[1] 1.5956

and if we give it 6.0, we get:

-4.9954 + (1.3182 * 6.0)
[1] 2.9138
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The difference between the two equations above is the value of the coefficient:

2.9138 - 1.5956
[1] 1.3182

Similar to other forms of regression coefficients, the logistic coefficient is the amount of change in the
outcome (i.e. the logit) for every unit change in our predictor (‘x3’). So, for every unit of ‘x3’ we would
expect a greater probability of “s” on the outcome. Keep in mind, the reason for using the log odds is to
attempt to represent the linear form (i.e. linear equation in the logit). If there is a non-linear relationship
between a predictor and the outcome, then the standard logistic model is inappropriate. For example
there may be a situation where low values of the predictor increase the log odds of the logit and medium
values of the predictor decrease the log odds and high valuesof the predictor increase the log odds – the
popular U-shaped curve.

Next we explore the binomial logistic regression with a single categorical predictor.

summary(glm(f ˜ x1, family = "binomial"))

Call:
glm(formula = f ˜ x1, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.48230 -0.00008 -0.00008 0.90052 0.90052

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.957e+01 6.209e+03 -0.003 0.997
x1b -5.389e-09 8.781e+03 0.000 1.000
x1c 2.026e+01 6.209e+03 0.003 0.997
x1d 2.026e+01 6.209e+03 0.003 0.997

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.2763 on 11 degrees of freedom
Residual deviance: 7.6382 on 8 degrees of freedom
AIC: 15.638

Number of Fisher Scoring iterations: 18

The first thing to state is that the model above has the same outcome variable (‘f’) as the previous two
models. So, we know we are predicting membership in the non-reference category of ‘f’ (which is the
log odds, odds, or probability of the value “s”). However, the coefficients in this model are a little dif-
ferent. The coefficient for the intercept term is actually the coefficient of the reference category of the
‘x1’ predictor, “a” = -19.57. That number is the log odds of “s” for cases with “a” on the ‘x1’ predictor.
Again, we can translate that value into odds or probability,as was done previously, both of which are
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incredibly small (but not the same value):

exp(-19.57)
[1] 3.168524e-09
exp(-19.57)/(1+exp(-19.57))
[1] 3.168524e-09

The other 3 coefficients (for “b”, “c”, & “d”) are not actuallycoefficients but, instead they represent
the difference between their respective coefficients and the reference category coefficient: “a” = -19.57.
Notice that the difference (“Estimate”), standard error,z-value, andp-value is the same for both “c” and
“d”. That may seem strange, but it will be explained in the next paragraph. Thep-values (andZ-test
values) are used to determine if these ‘difference scores’ (“Estimate” for “b”, “c”, & “d”) are statistically
different than zero. Note, thep-value for the reference category (“a”) is testing if that (true) coefficient is
different than zero. Naturally, one would now be wondering what the (true) coefficients are for “b”, “c”,
and “d”. If we run a no-intercept model, we are provided with all the coefficients (and their associated
tests to determine if they are different from zero):

summary(glm(f ˜ 0 + x1, family = "binomial"))

Call:
glm(formula = f ˜ 0 + x1, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.48230 -0.00008 -0.00008 0.90052 0.90052

Coefficients:
Estimate Std. Error z value Pr(>|z|)

x1a -19.5661 6208.8323 -0.003 0.997
x1b -19.5661 6208.8323 -0.003 0.997
x1c 0.6931 1.2247 0.566 0.571
x1d 0.6931 1.2247 0.566 0.571

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16.6355 on 12 degrees of freedom
Residual deviance: 7.6382 on 8 degrees of freedom
AIC: 15.638

Number of Fisher Scoring iterations: 18

Most of the output is identical to what was produced with an intercept term; only the 3 rows in the
“Coefficients” table for “b”, “c”, and “d” are different. It may seem strange that we have two sets of
identical coefficients; but this can happen and there is a perfectly simple explanation for it. You can see
why those coefficients are the same (for the two pairs of categories) if you review a cross-tabulation of
the two variables ‘f’ and ‘x1’.
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xtabs( ˜ f + x1)
x1

f a b c d
0 3 3 1 1
s 0 0 2 2

Categories “a” and “b” have the same number of “0” and “s”, and categories “c” and “d” have the same
number of “0” and “s”. We can also see why “a” and “b” have such large negative coefficients (and
corresponding tiny odds and probabilities); because, theyhave no values of “s”. Thep-value(s) for “a”
and “b” are extremely misleading in this example. First of all, the tiny sample size contributes to large
standard error(s); but even duplicating the data 1000 times, we still get a large standard error because
there are no cases of “a” and “b” which have a value of “s” on theoutcome.

df.1 <- data.frame(f, x1)
df.2 <- df.1
for (i in 1:1000){

df.2 <- rbind(df.2, df.1)
}; rm(i, df.1)
nrow(df.2)
[1] 12012
summary(glm(f ˜ 0 + x1, df.2, family = "binomial"))

Call:
glm(formula = f ˜ 0 + x1, family = "binomial", data = df.2)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.48230 -0.00008 -0.00008 0.90052 0.90052

Coefficients:
Estimate Std. Error z value Pr(>|z|)

x1a -19.56607 196.24242 -0.10 0.921
x1b -19.56607 196.24242 -0.10 0.921
x1c 0.69315 0.03871 17.91 <2e-16 ***
x1d 0.69315 0.03871 17.91 <2e-16 ***
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16652.2 on 12012 degrees of freedom
Residual deviance: 7645.8 on 12008 degrees of freedom
AIC: 7653.8

Number of Fisher Scoring iterations: 18

Second, even with a large sample thep-value might mislead, because logistic regression is all about pre-
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dicting the logit (log odds, odds, probability of the non-reference category of the outcome variable). So,
if the probability of “s” on the outcome is nearly zero (0.000000003168524; see above intercept version
of the model)...

exp(-19.57)/(1+exp(-19.57))
[1] 3.168524e-09

...then the probability of “0” (zero) on the outcome variable for a particular predictor or category (e.g.
“a” & “b”) is...virtually 1.0.

1 - (exp(-19.57)/(1+exp(-19.57)))
[1] 1

The coefficients for “c” and “d” are the log odds of “s” for those two categories of the predictor. We can
translate that coefficient to probability using the formulafrom above...

exp(.69315)/(1+exp(.69315))
[1] 0.6666673

...or, because of the simplicity of the data, we can simply look again at the cell counts.

xtabs( ˜ f + x1)
x1

f a b c d
0 3 3 1 1
s 0 0 2 2

With 2 out of 3 values being “s” (for both “c” and “d”), 2/3rds =0.6666. So, we might interpret the result
as: An observation of “c” has a probability of 0.66 of displaying a value of “s” and a probability of 0.33
of displaying a value of “0” on the outcome variable; becausewe only have one predictor in this model.
This would not be the case with multiple predictor variables.

Next, we introduce a one categorical and one numeric predictor. The interpretation of predictor co-
efficients does not change with the addition of more than one predictor when staying in the realm of
interpretation involving the logit or log odds. However, the predicted probabilities associated with the
values of the outcome are no long simply a transformation of the coefficients; which is why the caveat at
the end of the previous paragraph is critically important.

summary(glm(f ˜ x1 + x3, family = "binomial"))

Call:
glm(formula = f ˜ x1 + x3, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.56399 -0.00008 -0.00003 0.46586 1.35897
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -16.077 9552.278 -0.002 0.999
x1b 3.229 13508.960 0.000 1.000
x1c 28.254 9552.280 0.003 0.998
x1d 31.483 9552.284 0.003 0.997
x3 -3.229 3.274 -0.986 0.324

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.2763 on 11 degrees of freedom
Residual deviance: 6.4364 on 7 degrees of freedom
AIC: 16.436

Number of Fisher Scoring iterations: 19

To interpret the output above, we would maintain the logit (or log odds) scale of the coefficients. So,
the intercept coefficient is the log odds of the logit (i.e. a value of “s” on the outcome ‘f’) when a case
has a value of “a” on predictor ‘x1’ – “a” is the reference category for the predictor ‘x1’ and a value
of zero on ‘x3’. The coefficient for category “b” on predictor‘x1’ represents the difference in the logit
between cases with a value of “b” and cases with a value of “a” (the reference category). We could
say, holding everything else constant; the logit for cases with “b” on predictor ‘x1’ is then: -12.838 =
3.229 + (-16.077). The coefficient for category “c” on predictor ‘x1’ represents the difference in the logit
between cases with a value of “c” and cases with a value of “a” (the reference category). We could say,
holding everything else constant; the logit for cases with “b” on predictor ‘x1’ is 12.177 = 28.254 + (-
16.077). The coefficient for category “d” on predictor ‘x1’ represents the difference in the logit between
cases with a value of “d” and cases with a value of “a” (the reference category). We could say, holding
everything else constant; the logit for cases with “b” on predictor ‘x1’ is 15.406 = 31.483 + (-16.077).
The coefficient for the (continuous) predictor ‘x3’ is simply the amount of change in the logit with each
unit change in ‘x3’, holding everything else constant (i.e.values of ‘x1’ or any other predictors included
in the model). Stated another way, the log odds of “s” on the outcome variable ‘f’ woulddecrease by
about 3 (-3.229) for everyincrease in the value of ‘x3’ while holding all else constant.

Next, we can retrieve the predicted probabilities of each case (i.e. fitted values) using the following
script.

glm(f ˜ x1 + x3, family = "binomial")$fitted.values
1 2 3 4 5

2.985770e-09 2.985770e-09 8.971670e-01 8.971670e-01 8.204912e-10
6 7 8 9 10

8.204912e-10 7.056659e-01 7.056659e-01 2.254714e-10 2.254715e-10
11 12

3.971670e-01 3.971670e-01

The fitted values above are the predicted probabilities of each case having the non-reference category of
the outcome variable (i.e. a value of “s” on the variable ‘f’)given the model of ‘x1’ and ‘x3’ predicting
‘f’. You may notice that the fitted values / probabilities areeither extremely small (approximately 0.1)
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or extremely large (approximately 0.9), but they vary amongthose two extremes. This is because, in this
small data set (n =12) only four cases have “s” values; two cases have values of“c” and two cases have
values of “d” on ‘x1’ and each of the four cases have differentvalues of ‘x3’ (see the data, below):

df.1 <- data.frame(x1,x3,f)
df.1

x1 x3 f
1 a 1.1 0
2 b 2.1 0
3 c 3.1 s
4 d 4.1 s
5 a 1.5 0
6 b 2.5 0
7 c 3.5 s
8 d 4.5 0
9 a 1.9 0
10 b 2.9 0
11 c 3.9 0
12 d 4.9 s

Lastly, we can use the likelihood ratio test (LRT) to comparemodels and determine if a variable should
stay in the model (i.e. it is important) or not. This is a very rudimentary way of checking variable im-
portance.

mod.1 <- glm(f ˜ x1 + x3, family = "binomial")
mod.2 <- glm(f ˜ x3, family = "binomial")
anova(mod.1, mod.2, test = "LRT")
Analysis of Deviance Table

Model 1: f ˜ x1 + x3
Model 2: f ˜ x3

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 7 6.4364
2 10 11.1972 -3 -4.7608 0.1902

The LRT is NON-significant, so we could leave out variable ‘x1’; meaning there is no significant differ-
ence (in model fit) between the two models (with and without the ‘x1’ variable).

A version of the R script used in this article can be found on the Data Science and Analytics (DSA)
Do-It-Yourself Introduction to R website1. Data Science and Analytics (DSA)2 and High-Performance
Computing (HPC)3 services are available to help facilitate quality research.

1http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/
2https://it.unt.edu/research
3https://hpc.unt.edu/
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If you found these materials useful, please participate in the DSA Client Feedback Survey.
https://unt.az1.qualtrics.com/SE/?SID=SV_diLLVU9iuJZN8C9
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