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Reference category and interpreting regression
coefficients in R.

The primary purpose of this article is to illustrate the iptetation of categorical variables as predic-
tors and outcome in the context of traditional regressiahlagistic regression. First, we must under-
stand how R identifies categorical variables. The R langitaydifies categorical variables as ‘factors’
which can be ‘ordered’ or not. Throughout this article wel\w# dealing with unordered factors (i.e.
strictly discrete categorical variables). The categarfessfactor are identified as ‘levels’ of the factor. A
‘reference’ category is so named and identified as a catezfargmparison for the other categories. In
other words, the other categories aoenpared to the reference. By default R uses the alpha-numerically
first category as the reference category (e.g. “a” with teft&)” with numbers). Consider the factor
‘x1’ below, which is created by replicating the first fourtlats of the alphabet three times. It has four
levels: “a”, “b”, “c”, and “d”. The reference category, wiiavas not user-specified, is “a” because it is
alphabetically first of the levels.

x1 <- factor(rep(letters[1:4], 3))
x1

[l abcdabcdabcd
Levels: a b c d

summary(x1)

abcd

3333

levels(x1)

[1] "a" "b" "c" "d"

We can set a specific reference category by explicitly ptaoime of the levels first when specifying the
levels. We order the levels so whatever level is first will be bne we want as a reference. Below, we
use ‘X1’ to create a new factor, ‘x2’ and specify the leveldlsat “d” is the reference category. It is
important to note that the values of ‘x1’ and ‘x2’ are ideatjonly the reference category is different.

x2 <- factor(xl, levels = c("d","a","b","c"))
X2

[l abcdabcdabecd

Levels: d a b c

summary(x2)

dabc

3333

levels(x2)

[1] "d" "a" "b" "c"

Next, we create a numeric outcome variable, 'y’ such thatvidaes will correlate with the values of
‘x2’. We then demonstrate that by regressing ‘x2’ onto ‘y’.

y <- c¢(1.1, 2.1, 3.1, 4.1, 1.5, 25, 35, 45, 1.9, 2.9, 3.9, 4.9
summary(Im(y ~ x2))



Call:
Im(formula = y © x2)

Residuals:
Min 1Q Median 3Q Max
-0.4 -0.4 0.0 0.4 0.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5000 0.2309 19.486 5.00e-08 *kk

x2a -3.0000 0.3266 -9.186 1.59e-05 ook

x2b -2.0000 0.3266 -6.124 0.000282 ok

x2¢C -1.0000 0.3266 -3.062 0.015539 *

Signif. codes: 0’ »*x ' 0001 *=’'001' *"005°'01""1

Residual standard error: 0.4 on 8 degrees of freedom
Multiple R-squared: 0.9214, Adjusted R-squared: 0.8919
F-statistic: 31.25 on 3 and 8 DF, p-value: 9.103e-05

So, looking at the ‘x2" model, directly above; we see thatriean (y-value) of category, or level, “a”
is 3.0 units less than the mean (y-value) of “d” (which isdits the intercept). Likewise, the mean of
“b” is 2.0 units less than the mean of “d” and the mean of “c” i8 tnits less than the mean of “d” —
because “d” is the reference category in the linear regrassnd the negative coefficients represent the
“less than” in the interpretation. Thetest is simply testing if the difference between, say thegary

‘a’ coefficient and the reference category, ‘d’ is differéman zero: 4.50 - 1.50 = -3.00; is that absolute
difference greater than zero? Ygs: 0.0000159. To see all the coefficients, we can run a noaepear
model or simply plot the two variables.

summary(Im(y = 0 + x2))

Call:
Im(formula =y © 0 + x2)

Residuals:
Min 1Q Median 3Q Max
-0.4 -0.4 0.0 0.4 0.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x2d  4.5000 0.2309 19.486 5.00e-08 *xk
x2a  1.5000 0.2309  6.495 0.000189 *xk
x2b  2.5000 0.2309 10.825 4.68e-06 Aok
x2c  3.5000 0.2309 15.155 3.56e-07 *xk
Signif. codes: 0’ #x ' 0.001 ° =’001" =" 005"701""1



Residual standard error: 0.4 on 8 degrees of freedom
Multiple R-squared: 0.9897, Adjusted R-squared: 0.9846
F-statistic: 192.2 on 4 and 8 DF, p-value: 5.58e-08

plot(x2, y)

To interpret all four coefficients (listed in the ‘no-inteqt’ model)...we would say that all cases with
a value of “d” on ‘x2’ would be predicted to have a value of 459’ because, that is the average of
the “d” cases on ‘y’. So the coefficients for this model are average outcome variable value for the
category (or level) of the predictor variable. Thtests are simply testing whether the coefficients are
different than zero (here, all four are).

L ogistic Regression.

In this article the term logistic regression (Cox, 1958) w#i used for binary logistic regression rather
than also including multinomial logistic regression. Lsigi regression is used to regress categorical
and numeric variables onto a binary outcome variable. Thaccomplished by transforming the raw
outcome values into probability (for one of the two categeyj odds or odds ratio, and log odds (literally



the ‘log’ of the odds / odds ratio). The log odds of the norerefhce category are referred to as the
logit; that is what is being predicted. To understand théskogregression, one must have an idea of the
relationships between the probability, odds, and log oddisgst.

prob <- ¢(.001,.01,.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8,.85,.9,.95,.99,.999)
odds <- round(prob/(1-prob), 4)

logodds <- round(log(odds), 4)

logit.df <- data.frame(prob,odds,logodds)

rm(prob,odds,logodds)

logit.df

prob odds logodds
1 0.001 0.0010 -6.9078
2 0.010 0.0101 -4.5952
3 0.050 0.0526 -2.9450
4 0.100 0.1111 -2.1973
5 0.150 0.1765 -1.7344
6 0.200 0.2500 -1.3863
7 0.250 0.3333 -1.0987
8 0.300 0.4286 -0.8472
9 0.350 0.5385 -0.6190

10 0.400 0.6667 -0.4054
11 0.450 0.8182 -0.2006
12 0.500 1.0000 0.0000
13 0.550 1.2222 0.2007
14 0.600 1.5000 0.4055
15 0.650 1.8571 0.6190
16 0.700 2.3333 0.8473
17 0.750  3.0000 1.0986
18 0.800 4.0000 1.3863
19 0.850 5.6667 1.7346
20 0.900 9.0000 2.1972
21 0.950 19.0000 2.9444
22 0.990 99.0000 4.5951
23 0.999 999.0000 6.9068

As the data frame above illustrates, the probability rarngpseen zero and one. The odds or odds ratio
ranges between zero and 1000. The log odds range betweetivaeginity and positive infinity. The
transformation between log odds and probability is direat allows us to interpret a logistic regres-
sion in terms of the predicted probabilityhen the model includes only one predictor. When the model
contains more than one predictor variable, the transfaoomag no longer straight forward because the
predicted probability of the non-reference category (asfd;ourse, that of the reference category) is
based upon all predictors’ coefficients. Below, a binary oote variable is created. It is a factor with
two levels; “0” and “s” with “0” specified as the reference egory.

f <- factor(c("0","0","s","s","0","0","s","0","0","0","0","s"),
levels = c("0","s"))



f

[1] 00 ss00s0000O0s
Levels: O s

summary(f)

0s

8 4

levels(f)

[1] "O" "s"

Now, let's look at a binomial generalized linear model (GLM)rst, start with the simplest version, an
intercept only model.

summary(glm(f = 1, family = "binomial))

Call:
gim(formula = f © 1, family = "binomial")

Deviance Residuals:
Min 1Q Median 30Q Max
-0.9005 -0.9005 -0.9005 1.4823 1.4823

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.6931 0.6124 -1.132 0.258

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.276 on 11 degrees of freedom
Residual deviance: 15.276 on 11 degrees of freedom
AIC: 17.276

Number of Fisher Scoring iterations: 4

The above model produces one coefficient, the intercept, t@hith can be interpreted as the log odds
of predicting the non-reference category. Here, the rafsxeategory is “0” and the non-reference cat-
egory is “s”. We can then take the log odds coefficient and fiearksform it into the probability of “s”.
We have no information for this model, only the outcome \agavhich has only 4 values of “s” and 8
values of “0".

exp(-.6931)/(1+exp(-.6931))
[1] 0.3333438

So, just looking at the outcome we see 4 of 12 values are “s™dagligided by 12 equals .3333. Next,
what happens when we introduce a numeric predictor term?

X3 <-y
summary(glm(f = x3, family = "binomial™))



Call:
gim(formula = f ~ x3, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5920 -0.6181 -0.3540 0.7362 1.5796

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -4.9954 2.8916 -1.728 0.0841 .
X3 1.3182 0.8052 1.637  0.1016
Signif. codes: 0’ »*x ' 0001 *=’'001" *005°'701""1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.276 on 11 degrees of freedom
Residual deviance: 11.197 on 10 degrees of freedom
AIC: 15.197

Number of Fisher Scoring iterations: 5

The intercept coefficient is the log odds of someone with avaBue of zero having a ‘f’ value of “s”
(i.e. the non-reference category of the outcome variabég.can translate log odds into just odds or
even probability (of “s”), both of which are extremely smdlut, not the same value.

exp(-4.9954)

[1] 0.006769013
exp(-4.9954)/(1+exp(-4.9954))
[1] 0.006723501

Atypical logistic regression coefficient (i.e. the coeftigi for a numeric variable) is the expected amount
of change in the logit for each unit change in the predicttie Togit is what is being predicted; it is the
log odds of membership in the non-reference category of theome variable value (here “s”, rather
than “0”). The closer a logistic coefficient is to zero, thedénfluence it has in predicting the logit. So,
for every unit change in ‘x3’, we expect the log odds (or Ipgat increase by 1.3182. So, to put the
logistic coefficient in context, consider the equation of owdel: logit = -4.9954 + (1.3182*x3). If we
give ‘'x3’ a value, say 5.0 then we get:

-4.9954 + (1.3182  5.0)
[1] 1.5956

and if we give it 6.0, we get:

-4.9954 + (1.3182  6.0)
[1] 2.9138



The difference between the two equations above is the vdiline @oefficient:

2.9138 - 1.5956
[1] 1.3182

Similar to other forms of regression coefficients, the logisoefficient is the amount of change in the
outcome (i.e. the logit) for every unit change in our preali¢tx3’). So, for every unit of ‘x3’ we would
expect a greater probability of “s” on the outcome. Keep inanthe reason for using the log odds is to
attempt to represent the linear form (i.e. linear equatmothé logit). If there is a non-linear relationship
between a predictor and the outcome, then the standarditogiedel is inappropriate. For example
there may be a situation where low values of the predictaesse the log odds of the logit and medium
values of the predictor decrease the log odds and high vafubs predictor increase the log odds — the
popular U-shaped curve.

Next we explore the binomial logistic regression with a gntategorical predictor.
summary(glm(f = x1, family = "binomial))

Call:
gm(formula = f © x1, family = "binomial")

Deviance Residuals:
Min 1Q Median 30Q Max
-1.48230 -0.00008 -0.00008 0.90052 0.90052

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.957e+01 6.209e+03 -0.003 0.997

x1b -5.38%e-09 8.781e+03  0.000 1.000
x1lc 2.026e+01 6.209e+03  0.003 0.997
x1d 2.026e+01 6.209e+03  0.003 0.997

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.2763 on 11 degrees of freedom
Residual deviance: 7.6382 on 8 degrees of freedom
AIC: 15.638

Number of Fisher Scoring iterations: 18

The first thing to state is that the model above has the santemetvariable (‘f’) as the previous two
models. So, we know we are predicting membership in the eterence category of ‘f’ (which is the
log odds, odds, or probability of the value “s”). However ttoefficients in this model are a little dif-
ferent. The coefficient for the intercept term is actuallg toefficient of the reference category of the
‘x1’ predictor, “a” = -19.57. That number is the log odds of fer cases with “a” on the ‘x1’ predictor.
Again, we can translate that value into odds or probab#isywas done previously, both of which are
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incredibly small (but not the same value):

exp(-19.57)

[1] 3.168524e-09
exp(-19.57)/(1+exp(-19.57))
[1] 3.168524e-09

The other 3 coefficients (for “b”, “c”, & “d”) are not actuallgoefficients but, instead they represent
the difference between their respective coefficients aaddference category coefficient: “a” = -19.57.
Notice that the difference (“Estimate”), standard ergeralue, ancp-value is the same for both “c” and
“d”. That may seem strange, but it will be explained in thetrgaragraph. Th@-values (andZ-test
values) are used to determine if these ‘difference scotEstifnate” for “b”, “c”, & “d”) are statistically
different than zero. Note, thgvalue for the reference category (“a”) is testing if than€) coefficient is
different than zero. Naturally, one would now be wonderirtgatmhe (true) coefficients are for “b”, “c”,
and “d”. If we run a no-intercept model, we are provided willtlae coefficients (and their associated
tests to determine if they are different from zero):

summary(gim(f © 0 + x1, family = "binomial))

Call:
gm(formula = f © 0 + x1, family = "binomial")

Deviance Residuals:
Min 1Q Median 30Q Max
-1.48230 -0.00008 -0.00008 0.90052 0.90052

Coefficients:

Estimate Std. Error z value Pr(>|z|)
xla -19.5661 6208.8323 -0.003 0.997
xlb -19.5661 6208.8323 -0.003 0.997
x1c 0.6931 1.2247  0.566 0.571
x1d 0.6931 1.2247  0.566 0.571

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16.6355 on 12 degrees of freedom
Residual deviance: 7.6382 on 8 degrees of freedom
AIC: 15.638

Number of Fisher Scoring iterations: 18

Most of the output is identical to what was produced with atercept term; only the 3 rows in the
“Coefficients” table for “b”, “c”, and “d” are different. It maseem strange that we have two sets of
identical coefficients; but this can happen and there is &gy simple explanation for it. You can see
why those coefficients are the same (for the two pairs of caiteg) if you review a cross-tabulation of
the two variables ‘f’ and x1’.

10



xtabs( ~ f + x1)
x1

f abecd

03311

s0022

Categories “a” and “b” have the same number of “0” and “s”, aatégories “c” and “d” have the same

number of “0” and “s”. We can also see why “a” and “b” have suatgé negative coefficients (and

corresponding tiny odds and probabilities); because, tla@g no values of “s”. Thp-value(s) for “a”

and “b” are extremely misleading in this example. First of thle tiny sample size contributes to large

standard error(s); but even duplicating the data 1000 tinvesstill get a large standard error because

there are no cases of “a” and “b” which have a value of “s” ondhtcome.

df.1 <- data.frame(f, x1)
df.2 <- df.l
for (i in 1:1000){
df.2 <- rbind(df.2, df.1)
Y rm(i, df.1)
nrow(df.2)
[1] 12012
summary(gim(f © 0 + x1, df.2, family = "binomial"))

Call:
gim(formula = f © 0 + x1, family = "binomial”, data = df.2)

Deviance Residuals:
Min 1Q Median 30 Max
-1.48230 -0.00008 -0.00008 0.90052 0.90052

Coefficients:

Estimate Std. Error z value Pr(>|z|)
xla -19.56607 196.24242  -0.10 0.921
x1lb -19.56607 196.24242  -0.10 0.921

xlc  0.69315 0.03871 17.91 <2e-16 Hokk
xld  0.69315 0.03871 17.91 <2e-16 Hokx
Signif. codes: 0’ »** ' 0,001l #=’001’ =+ 005°'701""1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 16652.2 on 12012 degrees of freedom

Residual deviance: 7645.8 on 12008 degrees of freedom

AIC: 7653.8

Number of Fisher Scoring iterations: 18

Second, even with a large sample fhealue might mislead, because logistic regression is allapre-
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dicting the logit (log odds, odds, probability of the norier@nce category of the outcome variable). So,
if the probability of “s” on the outcome is nearly zero (0.000003168524; see above intercept version
of the model)...

exp(-19.57)/(1+exp(-19.57))
[1] 3.168524e-09

...then the probability of “0” (zero) on the outcome var@libr a particular predictor or category (e.g.
“a” & “b") is...virtually 1.0.

1 - (exp(-19.57)/(1+exp(-19.57)))
[1] 1

The coefficients for “c” and “d” are the log odds of “s” for tresvo categories of the predictor. We can
translate that coefficient to probability using the formintam above...

exp(.69315)/(1+exp(.69315))
[1] 0.6666673

...or, because of the simplicity of the data, we can simpbklagain at the cell counts.
xtabs( ~ f + x1)
x1

f abecd

03311

s0022
With 2 out of 3 values being “s” (for both “c” and “d”), 2/3rdsG6666. So, we might interpret the result
as: An observation of “c” has a probability of 0.66 of disptaya value of “s” and a probability of 0.33

of displaying a value of “0” on the outcome variable; becanseonly have one predictor in this model.
This would not be the case with multiple predictor variables

Next, we introduce a one categorical and one numeric p@dicthe interpretation of predictor co-
efficients does not change with the addition of more than aedigtor when staying in the realm of
interpretation involving the logit or log odds. Howeverethredicted probabilities associated with the
values of the outcome are no long simply a transformatioh@tbefficients; which is why the caveat at
the end of the previous paragraph is critically important.

summary(glm(f = x1 + x3, family = "binomial))

Call:
gim(formula = f ~ x1 + x3, family = "binomial")

Deviance Residuals:

Min 1Q Median 30 Max
-1.56399 -0.00008 -0.00003  0.46586 1.35897

12



Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept)  -16.077  9552.278 -0.002 0.999

x1b 3.229 13508.960  0.000 1.000
x1lc 28.254  9552.280  0.003 0.998
x1d 31.483  9552.284  0.003 0.997
X3 -3.229 3.274 -0.986 0.324

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.2763 on 11 degrees of freedom
Residual deviance: 6.4364 on 7 degrees of freedom
AIC: 16.436

Number of Fisher Scoring iterations: 19

To interpret the output above, we would maintain the logitl¢g odds) scale of the coefficients. So,
the intercept coefficient is the log odds of the logit (i.e.atue of “s” on the outcome ‘f’) when a case
has a value of “a” on predictor ‘x1’' — “a” is the reference apigy for the predictor ‘x1’ and a value
of zero on ‘x3'. The coefficient for category “b” on predictad’ represents the difference in the logit
between cases with a value of “b” and cases with a value of tle¢ (eference category). We could
say, holding everything else constant; the logit for casiis %" on predictor ‘x1’ is then: -12.838 =
3.229 + (-16.077). The coefficient for category “c” on preédicx1’ represents the difference in the logit
between cases with a value of “c” and cases with a value oftte’ (eference category). We could say,
holding everything else constant; the logit for cases withdn predictor ‘x1’ is 12.177 = 28.254 + (-
16.077). The coefficient for category “d” on predictor ‘x&presents the difference in the logit between
cases with a value of “d” and cases with a value of “a” (theneziee category). We could say, holding
everything else constant; the logit for cases with “b” ondictor ‘x1’ is 15.406 = 31.483 + (-16.077).
The coefficient for the (continuous) predictor ‘x3’ is simphe amount of change in the logit with each
unit change in ‘x3’, holding everything else constant (alues of ‘x1’ or any other predictors included
in the model). Stated another way, the log odds of “s” on thieaue variable ‘f’ woulddecrease by
about 3 (-3.229) for everiyncrease in the value of ‘x3’ while holding all else constant.

Next, we can retrieve the predicted probabilities of eacteqae. fitted values) using the following
script.

gm(f © x1 + x3, family = "binomial")$fitted.values

1 2 3 4 5
2.985770e-09 2.985770e-09 8.971670e-01 8.971670e-01 8.204912e-10

6 7 8 9 10
8.204912e-10 7.056659e-01 7.056659e-01 2.254714e-10 2.254715e-10

11 12

3.971670e-01 3.971670e-01
The fitted values above are the predicted probabilities o ease having the non-reference category of

the outcome variable (i.e. a value of “s” on the variable giyen the model of ‘x1’ and ‘x3’ predicting
‘f’. You may notice that the fitted values / probabilities ai¢gher extremely small (approximately 0.1)
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or extremely large (approximately 0.9), but they vary amthage two extremes. This is because, in this
small data setn(=12) only four cases have “s” values; two cases have valu&s' aihd two cases have
values of “d” on ‘x1’ and each of the four cases have differaities of ‘x3’ (see the data, below):

df.1 <- data.frame(x1,x3,f)
df.1
x1 x3 f
all
b 2.1
c 3.1
d 4.1
albs
b 2.5
c 35
d 45
a lo9
10 b 29
c 39
12 d 4.9

OCoOoO~NOOTP,,WNPRE

noOooomwoounmw mW oo

Lastly, we can use the likelihood ratio test (LRT) to compaedels and determine if a variable should
stay in the model (i.e. it is important) or not. This is a venglimentary way of checking variable im-
portance.

mod.1 <- gim(f © x1 + x3, family = "binomial”)
mod.2 <- gim(f © x3, family = "binomial")
anova(mod.l, mod.2, test = "LRT")

Analysis of Deviance Table

Model 1: f ™ x1 + x3
Model 2: f © x3
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 7 6.4364
2 10 11.1972 -3 -4.7608  0.1902

The LRT is NON-significant, so we could leave out variable’;xdeaning there is no significant differ-
ence (in model fit) between the two models (with and withoat'#1’ variable).

A version of the R script used in this article can be found an Bfata Science and Analytics (DSA)
Do-It-Yoursdlf Introduction to R websitd. Data Science and Analytics (DSgﬁé)nd High-Performance
Computing (HPCE services are available to help facilitate quality research

Inttp://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R SCJ
Zhttps://it.unt.edu/research
Shttps://hpc.unt.edu/
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