
Five easy steps forscraping datafrom web pages.

As published in Benchmarks RSS Matters, November 2013

http://web3.unt.edu/benchmarks/issues/2013/11/rss-matters

Jon Starkweather, PhD

1

http://web3.unt.edu/benchmarks/issues/2013/11/rss-matters


Jon Starkweather, PhD
jonathan.starkweather@unt.edu

Consultant
Research andStatisticalSupport

http://www.unt.edu

http://www.unt.edu/rss

RSS hosts a number of “Short Courses”.
A list of them is available at:

http://www.unt.edu/rss/Instructional.htm

Those interested in learning more about R, or how to use it, canfind information here:
http://www.unt.edu/rss/class/Jon/R_SC

2

http://www.unt.edu
http://bayes.acs.unt.edu:8083:8083/BayesContent
http://bayes.acs.unt.edu:8083:8083/BayesContent/Instructional.htm
http://bayes.acs.unt.edu:8083:8083/BayesContent/class/Jon/R_SC


Five easy steps forscraping datafrom web pages.
In a perfect world, all data would be easily available to everyone as comma separated values (CSV)

files. Unfortunately, Earth is not yet a perfect world. Occasionally, some interesting data is unavailable
as a CSV download, but is available and / or displayed on a web page. The term scraping data refers
to the process of parsing the HTML source code of an availableweb page in order to extract, retrieve,
or scrape some specific data from the web page. In truth, the title of this article is a bit misleading.
The functions used to scrape data are fairly straightforward and easy to use; but, there is a significant
assumption when using them. The time consuming assumption isyou need to know where the desired
data is located among the lines of HTML code of the web page youare scraping. However, once the line,
or lines, have been identified; the R script used to scrape thedata and put it into a manageable R format
is very easy to use and can be reused over time. The example below illustrates the process of scraping
the DOW Jones Industrial average from the Reuters Commodities(2013) website; specifically, the fol-
lowing web page:http://www.reuters.com/finance/commodities/energy#oil (dis-
played below). Keep in mind; scraping data does not require the target web page to be open in a browser.
In fact, the script in this article, and other scripts like it, will work without ever opening a browser - only
an internet connection is required. Of course, the target web page needs to be public (i.e. not behind a
log in or encrypted).

The specific data retrieved in this example will be the DOW, which is listed in the small Markets table

3

http://www.reuters.com/finance/commodities/energy#oil


on the right side of the page [screen capture] above and marked with the green rectangle. At the time of
writing (August 27, 2013; the number changes throughout theday), the number desired is 14805.05.

Step 1: Get the web page.

Obviously, the first step is to know the URL for the page you willbe scraping. The URL for this
example is stated above. The function used for importing an HTML page into R is ’readLines’ which is
available in the ’base’ package (installed with every installation of R). There are other functions which
can accomplish this task, such as those found in the RCurl1 package, which allow more complex control
and parsing of HTML code.

The key argument, indeed the only necessary argument, is theconnection (con) which specifies the lo-
cation of the file to be imported. Below we use the ’readLines’ function and the URL (as the connection
to the file / web page) to import the web page and name that object ’r.page’ for Reuters page.

r.page <- readLines("http://www.reuters.com/finance/commodities/energy#oil")

Given the length of the page (in number of lines of HTML sourcecode), it may take a significant
amount of time to find the line number (or row) of the page whichcontains the data of interest.

length(r.page)
[1] 2005

Some web pages are fairly simple and the specific data of interest can be found relatively easily using
the ’which’ function and other common R indexing functions.Unfortunately, the Reuters page used in
this example is fairly complex and contains over 2000 lines of HTML source code. It can be helpful with
complex pages, such as this example, to copy and paste the source HTML code (here, the ’r.page’ object
in R) into a text editor (most have line numbers along the left edge and do nottext wrapeach line) so that
the data of interest can be identified by the row of HTML code where it is found.

Step 2: Scraping the line(s) of data.

We know from previously looking through the HTML source codethat we need line 917 (of the 2005
lines) to get the DOW number (14805.05). So, we retrieve thisline of HTML using its line number and
assign the line of HTML to the object ’dow.data’.

dow.data <- r.page[917]
dow.data
[1] "\t\t\t\t\t\t<td class=\"data size8\" valign=\"middle\">14,805.05</td>"

Keep in mind; we could specify multiple lines to retrieve, creating a vector of lines with each line con-
taining some data of interest. As an example, we might also beinterested in the price of Gold (1420.10
in the screen capture above). In which case, we would also scrape, or retrieve, line 1005 of the r.page
object and add it to the dow.data object - would then contain both lines of HTML code (i.e. one line for

1http://cran.r-project.org/web/packages/RCurl/index.html

4

http://cran.r-project.org/web/packages/RCurl/index.html


the Dow and one line for Gold).

Step 3: Reducing the HTML to isolate the data.

The next obvious step is to replace and / or remove the HTML code which is not needed, in order
to isolate the actual data of interest. It is important to note that the entire line retrieved (and displayed
above and below) is a character string. Therefore, we need a special function which will read each place
or character of the line. To do this, we use the ’gsub’ function, also from the ’base’ package. This func-
tion is extremely useful; it allows fine control for parsing character strings and replacing (substituting)
patterns or specific characters with any other value or no value at all. If no value is specified (as the
replacement), then the pattern or character specified in the’pattern’ argument is simply removed.

new.line.1 <- dow.data; new.line.1
[1] "\t\t\t\t\t\t<td class=\"data size8\" valign=\"middle\">14,805.05</td>"

Notice there is one other ’number’ in the line of HTML which weDO NOT want (“...size8...”), so we
first replace or substitute that pattern of character stringwith the letter “a”. Here we are using “a” as a
replacement value (the choice is fairly arbitrary). Also, below we are creating a ’new line’ (new.line.2)
rather than simply writing over the old line (new.line.1) - again, that choice is rather arbitrary.

new.line.2 <- gsub(pattern = "size8", replacement = "a", x = new.line.1,
ignore.case = TRUE, perl = FALSE, fixed = FALSE, useBytes = FALSE)

new.line.2
[1] "\t\t\t\t\t\t<td class=\"data a\" valign=\"middle\">14,805.05</td>"

Next, we need to remove all the remaining HTML symbols, including the comma (but not the decimal
point). Notice the space between each element of the patternwe are specifying. Also notice the last
element of the pattern is “a-z” which indicates all letters.Here, we are not actually substituting, but
rather removing all the elements of the pattern; because, weare using no value as the replacement - there
is nothing between the quotation marks in the replacement argument below.

new.line.3 <- gsub(pattern = "([\t =\\ <\\ >\\ \" /td , a-z])",
replacement = "", x = new.line.2, ignore.case = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

new.line.3
[1] "14805.05"

It is important to realize that the “number” returned from the code above (i.e. new.line.3) is not actually
a ’number.’ It is still formatted as character string; that is why it has quotation marks around it.

Step 4: System time and a data frame.

Now, we can create a data frame in which to put our new line of DOW data as well as the time stamp
indicating when we scraped or grabbed the data from the web page.

5



dow.df <- data.frame(matrix(rep(NA,3), ncol = 3))
names(dow.df) <- c("string.date","numeric.date","DOW")
dow.df

string.date numeric.date DOW
1 NA NA NA

Below, we retrieve the date and time using the ’Sys.time’ function and make sure to store the numeric
version as well as the character string version.

dow.df[,1] <- Sys.time()
dow.df[,2] <- as.numeric(Sys.time())

Finally, we can convert our data into numeric and put it into the data frame we created.

dow.df[,3] <- as.numeric(new.line.3)
dow.df

string.date numeric.date DOW
1 2013-08-27 14:58:10 1377633491 14805.05

Step 4: System time and a data frame.

We can then save or export the data by setting the working directory to the location we want to store
the file and using the ’write.table’ function.

setwd("C:/Users/jds0282/Desktop/")
write.table(dow.df, file = "dow.df.txt", sep = ",", na = "NA",

dec = ".", row.names = TRUE, col.names = TRUE)

Conclusions

Keep in mind, although it may take significant effort to identify the line number of the data of interest,
once the script has been written and checked, it can be used repeatedly (e.g. each day) to retrieve the
data of interest (i.e. to build a time series data file). The only real problem which can occur is when
the HTML source code is changed, in other words, if the web page author(s) update(s) the layout of the
page. Then, of course, it would be necessary to verify the line number of the data of interest and re-check
the script to make sure it returns the desired information.

As stated above, there are other ways of accomplishing what was accomplished in this article; the
’RCurl’ package is apparently quite popular. All of the functions used in this article are available with a
base install of R - the functions are available in the ’base’ package. For more information on what R can
do, please visit the Research and Statistical Support Do-It-Yourself Introduction to R2 course website.
An Adobe.pdf version of this article can be found here3.

2http://www.unt.edu/rss/class/Jon/R_SC/
3http://www.unt.edu/rss/rssmattersindex.htm

6

http://bayes.acs.unt.edu:8083:8083/BayesContent/class/Jon/R_SC/
http://bayes.acs.unt.edu:8083:8083/BayesContent/rssmattersindex.htm


Until next time;“information wants to be free”...

References & Resources

Lang, D. T. (2013). Package RCurl. Package documentation available at:
http://cran.r-project.org/web/packages/RCurl/index.html and further
information available at:http://www.omegahat.org/RCurl/

ProgrammingR.com (2013) Webscraping using readLines and RCurl. Available at:
http://www.programmingr.com/content/webscraping-using-readlines-and-rcurl/

Reuters. (2013). Commodities: Energy. Retrieved on August 27,2013 from:http://www.reuters.com/finance/commodities/energy#oil

This article was last updated on November 5, 2013.

This document was created using LATEX

7

http://cran.r-project.org/web/packages/RCurl/index.html
http://www.omegahat.org/RCurl/
http://www.programmingr.com/content/webscraping-using-readlines-and-rcurl/
http://www.reuters.com/finance/commodities/energy#oil

