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Un-modeled Confounders: Don’t get burned by
Simpson’s Paradox.

A long time ago, in a faraway place..., the term data mining carried with it a negative connotation.
However, thanks in part to Google and other pioneers of huge data analysis, data mining has become
much more acceptable. The purpose of this article is to demonstrate the necessity of applying data mining
principles to the initial data analysis phase of any study utilizing quantitative data. In short, it is the re-
sponsibility of the primary investigator to thoroughly explore the collected data in order to determine if the
data supports the planned statistical procedures for addressing research questions or formal hypotheses;
as a former colleague often said:know thy data. One concern common to most empirical quantitative
studies isconditional independence. Conditional independence refers to a situation among three(or more)
random variables when the relationship between two of them is independent of values of the third. Es-
sentially, all other influences have been controlled and only the effect of interest (the relationship between
two variables) is displayed in the results. In other words, ensuring that the experimental effect is isolated
from any confounds, often done with probability estimates (e.g., propensity scores, matching, etc.), or
the design of the study (experimental control). This article demonstrates a simple example in which the
primary effect of interest is not conditionally independent of confounds. The example(s) at the bottom
detail Simpson’s paradox, wherein a correlation between two variables (X & Y) is strikingly misleading
unless one also recognizes the underlying groups (Z) of cases. First, however, the article makes clear the
definition of conditional probability and independence.

Conditional Probability & Independence

In traditional symbolic probability terms, we sayX is independent ofZ if:

p(X) = p(X|Z) (1)

which can be interpreted as: the probability ofX is equal to the probability ofX givenZ. This statement
should make clear thatX is unrelated toZ (i.e. X is independent ofZ). Likewise, we could sayY is
independent ofZ if:

p(Y ) = p(Y |Z) (2)

which can be interpreted as: the probability ofY is equal to the probability ofY given Z. Now, condi-
tional independence refers to the conditional probabilityof X givenZ being unrelated to the conditional
probability ofY givenZ. Stated another way,X andY are conditionally independent givenZ, if:

p(X ∩ Y |Z) = p(X|Z)p(Y |Z) (3)

In other words,X andY are conditionally independent givenZ if they are independent in their conditional
probability distributions givenZ. Knowing the values ofZ does not informX or Y.

The Examples

The following examples utilize theR statistical programming environment. Those unfamiliar with
R can learn more at the Research and Statistical Support Introduction toR Short Course. The examples
also utilize the function ‘scatterplot’ from the package car (which requires loading it and its dependencies
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[package MASS & package nnet]). An example of the script usedto create the images below can be found
here.

The first example illustrates conditional independence:

As can be seen above, the correlation betweenX andY is positive (r = 0.63). We see (below) a fairly
standard scatterplot generated withX andY, without respect to the grouping variableZ. The green line
represents the ordinary least squares (OLS) regression line.

The next scatterplot shows the relationship betweenX andY, as well as the groups ofZ (low, medium, &
high); with each of the three groups designated by differentsymbols and colors.
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The important thing to notice in the plot above is that the relationship betweenX andY is not affected by
the groups (i.e. each of the groups displays essentially thesame positive relationship betweenX andY).

The second example introduces some dependence among the groups and demonstrates the danger
of failing to investigate the grouping variable’s (Z) influence on the relationship between the primary
variables of interest (X & Y).

In the above (script) image, we can see that each of the three groups displays a negative correlation between
X andY (group 1:rxy = −0.17; group 2:rxy = −0.35; group 3:rxy = −0.24). However, if we fail to
recognize (i.e. investigate) those groups, we see a positive relationship betweenX andY (rxy = 0.41)
when the groups are not taken into account.
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As can be seen above, the positive (overall) relationship betweenX andY (rxy = 0.41), even graphically
displayed, requires a keen eye and at least some suspicion torealize there may be clusters within the data.

The above image clearly shows the distinctly different nature of the data when the groups are identified.
These last two images should clearly demonstrate Simpson’sParadox and the importance of being thor-
ough when conducting initial data analysis. These examplesshow that it is possible to have the opposite
opinion concerning the nature of a relationship between twovariables when one does not establish the
independence of a third variable. In other words, at first glanceX andY appear to be positively related
(rxy = 0.41); but once we identify the groups we see that in fact the relationship is negative (group 1:
rxy = −0.17; group 2:rxy = −0.35; group 3:rxy = −0.24).
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The third example shows a slightly more extreme situation. Below, you can see that the relationship
betweenX andY is approximately the same as in the previous example (rxy = 0.43). However, each
group displays a stronger relationship than in the previousexample (group 1:rxy = −0.55; group 2:
rxy = −0.44; group 3:rxy = −0.48).

The scatterplot below does not explicitly identify the groups, but given their stronger relationships they
are fairly easy to see.

Next, we identify the groups explicitly and plot their (negative) relationships which are clearly in opposi-
tion to the overall (positive) relationship.
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The fourth and final example shows an even more extreme situation. Below, you can see that the
relationship betweenX andY is approximately the same as in the previous example (rxy = 0.56). However,
each group displays a stronger relationship than in the previous example (group 1:rxy = −0.58; group 2:
rxy = −0.74; group 3:rxy = −0.68).

This time, the overall scatterplot shows how the clusters ofdata are distinct enough to be clearly recogniz-
able.
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And finally, we identify the groups or clusters explicitly and can see they all display a moderate negative
relationship.

The script available on the RSS Introduction to R short coursepage includes two even more extreme
examples. That script is available here.
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Conclusions

It is important to recognize that the contrived examples used in this article are extreme in how much
different the relationship betweenX andY is when accounting for the groups versus not accounting for
the groups. Also, in these examples, the group variable was at least recognized and was included in the
data collection; often clusters are discovered in patternsof data without prior knowledge of their pres-
ence. Therefore, it is extremely important for data analysts to thoroughly investigate andknow their data
intimately. Fortunately, there is a solution (inR). Package Simpsons contains a function called ‘Simp-
sons’ which tests two continuous variables for the presenceof subpopulations (i.e. groups). The function
operates by testing whether subpopulations display the same direction and approximate magnitude of re-
lationship as the entire set of cases. The user of the function can supply a suspected grouping variable
(e.g., gender / sex) or not. The package also contains functions for summarizing and plotting the results of
the ‘Simpsons’ function. If clusters are recognized in the data, then it may be necessary to collect more /
new data simply to explain the clusters. Simpson’s paradox is an extreme type of problem, but it should be
realized that less extreme situations can (and often do) occur – where the change in relationship may not
be as drastic a change as those used in the examples above (i.e. from negative to positive or vice versus).
It is also worth noting that even though Robinson (1950) was concerned with clusters among continuous
data; Simpson (1951) was interested in contingency tables (i.e. not necessarily continuous variables) and
demonstrated the phenomena in that context. Oddly, the paradox is most recognized as Simpson’s and not
Robinson’s.

Until next time;Happy Festivus...
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