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Intro Classes Properties Summary

The RSS short courses

The Research and Statistical Support (RSS) office at the
University of North Texas hosts a number of “Short Courses”. A
list of them is available at:

http://www.unt.edu/rss/Instructional.htm
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Fictional Extraction Example

Suppose a man, we’ll call him Bob Prentice, from England;
owns an oil company which operates 1000 deep water drilling
rigs...

Bob wants to maximize his profits (barrels of oil extracted) while
minimizing his expenditures (operating costs).
So Bob gathers data on how many barrels of oil each of his
1000 rigs extracted in 1 month because, Bob might want to shut
down rigs which do not extract much oil, but still cause him to
pay the substantial operating costs.

The resulting data file is available at the following link:
http://www.unt.edu/rss/class/Jon/ISSS/
Module003/M3_BigOilData.txt

How will Bob describe his data?
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Describing Data

Bob is interested in describing the extraction and cost of his
rigs. But, he does not want to look at all 1000 rigs’ data
(population) and instead decides to draw at random 10 rigs’
data (sample) which is available on the next slide (Table 1).

After displaying his data (as covered in Module 2), with a
variety of tables and figures (graphs), Bob will likely use
Descriptive Statistics to describe his data.
Recall the goals of science and how we achieve them from
Module 1:

Observation yields Description
Experimentation yields Explanation
Modeling yields Prediction

Descriptive Statistics only allow us to describe the
data.
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Data: Extraction & Cost Sample (n = 10)

Table 1: Raw Data for One Month

rig barrels costs
065 166 570
142 185 560
198 159 520
277 207 580
408 194 530
533 191 560
621 176 510
788 216 550
796 199 560
915 228 560

“rig” = identification number; “barrels” = 1,000 barrels extracted;
“costs” = 1,000 USD
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A note about Notation

Generally, variables are given capital letters, commonly X
and Y.

Subscripts are used to identify each score on a variable.
A set of scores [35,22,15,96,84,77] on Variable X
So that scores can be ‘called’ X1 = 35; X2 = 22 ... X6 = 77

Multiple subscripts can be used to identify a score located
at a particular row (i) and column (j).

So, we can use the convention Xij to identify a particular
score, such as X23 = 51
Which indicates that score 51 is located in the 2nd row and
in the 3rd column of a table of data.

Starkweather Module 3
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Use and rules of Sigma as Summation

Please note that:

The
∑

X is read as the sum of the values of X
Such as X1 + X2 + X3+ ... Xn
Where n is the number of scores of variable X.

The
∑

X 2 is read as the sum of the squared values of X.
Such as X 2

1 + X 2
2 + X 2

3+ ... X 2
n

Which is very different from the following.
The (

∑
X )2 is read as the square of the sum of the values

of X
Such as (X1 + X2 + X3 + ...Xn)

2
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The 4 Classes of Descriptive Statistics

There are many ways to describe data because, there are
many types of descriptive statistics and many individual
descriptive statistics.

There are four classes of descriptive statistics.
Central Tendency
Dispersion
Shape
Relationship

Each class tells Bob something about how his rigs are
producing.
Each class of Descriptive Statistics tells us something
about how scores are distributed.
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Central Tendency

There are 3 primary measures of central tendency; each
has pros and cons, but all attempt to describe the center
point of a distribution of scores.

Mode
Median
Mean

Measures of central tendency offer us a “point” estimate, or
single number, which we can use as a summary of a
distribution of scores.

One number which represents or characterizes the entire
distribution (as best as one number can).

Keep in mind, the center point of scores in a distribution
may not be in the middle of the scale of those scores
(more on this later).
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The Mode: symbol = Mo

The mode is the most frequently occurring score in a
distribution.

Commonly used with categorical variables.
Pro: Easy to compute: simply observe and report the most
frequent score(s).
Pro: Not affected by outliers
Con: Usually only reflects one actual score1.
Con: Different samples almost always produce different
modes for the same variable.

1Multi-modal distributions have multiple scores which occur most
frequently; meaning multiple scores occur the same (most frequent)
number of times.
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Oil Sample (n = 10) Example showing the Mode
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The Median: symbol = Mdn

The median is the “middle” score of a distribution.

More precisely, it is the point that lies in the middle of a
distribution.

Sometimes referred to as the 50th percentile because,
there are as many scores above it as there are below it.

Pro: Not affected by outliers (extreme scores).
Con: Ignores all but the middle of a distribution.

To calculate the median, first the scores must be arranged in
sequential order (e.g., smallest to largest).

Then;
For an odd number of scores, the middle score is the
Median.
For an even number of scores, the average of the two
middle scores is the median.
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Oil Sample (n = 10) Example showing the Median
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The Mean: sample symbol = X , population symbol = µ

The mean is the arithmetic average of the scores of a
distribution.

Mean is the most popular measure of central tendency.
Pro: Generally the best measure of central tendency
because, it utilizes all the scores.
Con: Very sensitive to outliers (extreme scores).

To calculate the sample mean, simply sum all of the scores
and divide by the number of scores:

X =
∑

X
n
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Oil Sample (n = 10) Example showing the Mean

General formula for Mean:

X =
∑

X
n or2: Y =

∑
Y

n

Barrels: X = 159+166+176+185+191+194+199+207+216+228
10

Barrels: X = 1921
10 = 192.1

Costs: Y = 510+520+530+550+560+560+560+560+570+580
10

Costs: Y = 5500
10 = 550

2Recall, the capital letter we chose to represent a variable is
arbitrary, X and Y are commonly used examples.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Oil Sample (n = 10) Example showing the Mean

General formula for Mean:

X =
∑

X
n or2: Y =

∑
Y

n

Barrels: X = 159+166+176+185+191+194+199+207+216+228
10

Barrels: X = 1921
10 = 192.1

Costs: Y = 510+520+530+550+560+560+560+560+570+580
10

Costs: Y = 5500
10 = 550

2Recall, the capital letter we chose to represent a variable is
arbitrary, X and Y are commonly used examples.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Oil Sample (n = 10) Example showing the Mean

General formula for Mean:

X =
∑

X
n or2: Y =

∑
Y

n

Barrels: X = 159+166+176+185+191+194+199+207+216+228
10

Barrels: X = 1921
10 = 192.1

Costs: Y = 510+520+530+550+560+560+560+560+570+580
10

Costs: Y = 5500
10 = 550

2Recall, the capital letter we chose to represent a variable is
arbitrary, X and Y are commonly used examples.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Oil Sample (n = 10) Example showing the Mean

General formula for Mean:

X =
∑

X
n or2: Y =

∑
Y

n

Barrels: X = 159+166+176+185+191+194+199+207+216+228
10

Barrels: X = 1921
10 = 192.1

Costs: Y = 510+520+530+550+560+560+560+560+570+580
10

Costs: Y = 5500
10 = 550

2Recall, the capital letter we chose to represent a variable is
arbitrary, X and Y are commonly used examples.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Oil Sample (n = 10) Example showing the Mean

General formula for Mean:

X =
∑

X
n or2: Y =

∑
Y

n

Barrels: X = 159+166+176+185+191+194+199+207+216+228
10

Barrels: X = 1921
10 = 192.1

Costs: Y = 510+520+530+550+560+560+560+560+570+580
10

Costs: Y = 5500
10 = 550

2Recall, the capital letter we chose to represent a variable is
arbitrary, X and Y are commonly used examples.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Oil Sample (n = 10) Example showing the Mean

General formula for Mean:

X =
∑

X
n or2: Y =

∑
Y

n

Barrels: X = 159+166+176+185+191+194+199+207+216+228
10

Barrels: X = 1921
10 = 192.1

Costs: Y = 510+520+530+550+560+560+560+560+570+580
10

Costs: Y = 5500
10 = 550

2Recall, the capital letter we chose to represent a variable is
arbitrary, X and Y are commonly used examples.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Trimmed Mean & M-estimators

Because mean is very sensitive to outliers, alternatives have
been proposed which attempt to correct for this problem.

Trimmed mean simply refers to a mean calculated after
“trimming” a certain percentage of extreme scores.

The median is an extreme example of a trimmed mean; the
median trims all but the middle score or middle two scores.
Common examples are 10% and 20% trimmed means;
where the 10 or 20% of the most extreme scores (high &
low) are trimmed.

M-estimators are weighted means; meaning scores near
the middle are given more weight and scores at the
extremes are given less weight.
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Dispersion

Measures of dispersion offer us an idea of how spread out the
scores are, or how wide is the distribution of scores.

There are 5 primary measures of dispersion; 3 of which will
be used repeatedly during the rest of this course.

Range
Sums of Squares
Variance
Standard Deviation
Coefficient of Variation

All measures of dispersion must not be zero.
If a measure of dispersion is zero, then you do not have a
variable, you have a constant.
If our scores are: (5, 5, 5, 5, 5) then dispersion is zero and
this is a constant.
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The Range

The range is simply the maximum score, minus the minimum
score.

Examples from our oil data:
Barrels: 228− 159 = 69
Costs: 580− 510 = 70

Disadvantages:
It is calculated from only 2 scores.
Those two values are the most extreme in the distribution
(obviously sensitive to outliers).
The range can change dramatically from sample to sample
(of the same variable).
The range is not terribly informative.
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Sums of Squares: symbol = SoS

The Sums of Squares are the sum of the squared deviations
from the mean for a distribution of scores.

Though not informative or used as a measure of
dispersion, it is very frequently used in the calculation of
other statistics.

The general formula for calculating a variable’s SoS is:

SoS =
∑(

X − X
)2
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Variance: sample symbol = S2, population symbol = σ 2

The variance is the average of each score’s squared difference
from the mean.

The general formula for calculating a variable’s sample
variance is:

S2 =
∑
(X−X)

2

n−1 or S2 = SoS
n−1

The formula for calculating a variable’s population
variance is:

σ 2 =
∑

(X−µ)2

N

Note: with a sample, we divide by n − 1; if we divided by n,
our variance statistic would be less representative of the
variance parameter (i.e., the sample value would be
systematically smaller than the population value).
Also note: when referring to total number of scores
in a population we use N, in a sample we use n.
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Standard Deviation: sample symbol = S, population symbol = σ

The Standard Deviation is the square root of the variance and
allows us to compare the dispersion of one distribution to
another.

It is the most commonly reported measure of dispersion3.
It is very easy to calculate...just take the square root of the
variance.

Sample Formula: S =
√

S2

Population Formula: σ =
√
σ 2

Note the use of the word “Standard” which you will see
often; it refers to standardization, which tends to allow us
to compare statistics from different variables or
distributions (i.e., apples & oranges).

3The American Psychological Association (APA) Publication
Manual requires that mean and standard deviation be reported
whenever one is referring to a group of scores.
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Formula Smormula: Computational formulas vs. Definitional formulas

Computational: designed to make computing by hand easier.

A matter of opinion these days...
Definitional: designed to make understanding the concept
easier, formula follows the definition of the concepts.

Here are both for the standard deviation of a sample.
Definitional Computational

S =

√∑
(X−X)

2

n−1 S =

√∑
X 2−[(

∑
X)2/n]

n−1

Either can be used; both types provide the same answer.
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Calculating SoS using example data (X = barrels)

Xi X X
(

X − X
) (

X − X
)2

1 159 192.1 -33.1 1095.61
2 166 192.1 -26.1 681.21
3 176 192.1 -16.1 259.21
4 185 192.1 -7.1 50.41
5 191 192.1 -1.1 1.21
6 194 192.1 1.9 3.61
7 199 192.1 6.9 47.61
8 207 192.1 14.9 222.01
9 216 192.1 23.9 571.21
10 228 192.1 35.9 1288.81∑

X = 1921 SoS =
∑(

X − X
)2

= 4220.90

Sample mean = X =
∑

X/n = 1921/10 = 192.1
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Calculating variance & standard deviation using example data (X = barrels)

Taking the information from the last slide...

Sample Variance for ‘Barrels’ is:

S2 =
∑
(X−X)

2

n−1 = SoS
n−1 = 4220.90

10−1 = 4220.90
9 = 468.99

Sample Standard Deviation for ‘Barrels’ is:

S =

√∑
(X−X)

2

n−1 =
√

SoS
n−1 =

√
S2 =

√
468.99 = 21.66
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Coefficient of Variation

The Coefficient of Variation (CV) is calculated by dividing the
standard deviation by the mean, then multiply the result times
100 to express it as a percentage.

The CV allows us to compare the standard deviation of one
distribution to another.

CV = S
X
× 100 = 21.66

192.1 × 100 = 0.1128× 100 = 11.28

The CV for ‘Barrels’ tells us that the standard deviation is
11.28% of the mean.
In contrast, the CV of ‘Costs’ was 4.11% of the mean; the mean
was 550.

You should be able to work backwards from the information
in the lines directly above to get the standard
deviation, variance, & sums of squares for ‘Costs’.
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Shape

Measures of shape offer us an idea of what the distribution of
scores looks like when plotted.

Unimodal: one peak
Bimodal: two peaks
Multimodal: multiple peaks
Rectangular distributions: multiple peaks of the same
magnitude

There are two measures of shape we commonly use:
Skewness (or simply Skew)
Kurtosis
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Skewness

The Skewness refers to the amount of non-symmetry a
distribution of scores contains.

Negative skew is when the tail points to the smaller values
and most scores are located at the larger values.
Positive skew is when the tail points to the larger values
and most scores are located at the smaller values.
Zero skew indicates symmetry.

The farther from zero the skewness, the less symmetric the
distribution of scores.
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Recognizing Skewness
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Kurtosis

The Kurtosis measures the amount of tail magnitude,
commonly referred to as “peak-ness” or “flatness” of a
distribution of scores.

Kurtosis is based on the size of a distribution’s tails.
A distribution with a large, positive kurtosis has thin tails
and the distribution looks peaked.

This is known as Leptokurtic.
A distribution with a large, negative kurtosis has thick tails
and the distribution looks flat.

This is known as Platykurtic (like a plateau).
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Describing a Distribution’s Shape
How can we describe the shape of the distribution of our
sample’s Barrels variable?

Unimodal. Slightly Negatively Skewed?
Leptokurtic (positive kurtosis)?
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Deceptive Sample Leads to Poor Judgment

When we have such a small sample size (n = 10), we must
be careful when eyeballing the distribution.

Actually, the Skewness for Barrels is .068
And, the Kurtosis for Barrels is -.595

Generally, in the social sciences; we expect variables to
have skewness and kurtosis between +1 and -1.
When a variable displays a skewness or kurtosis larger
than +1 or -1, then we say the variable is not symmetrical
and/or does not have well proportioned tails.
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Relationship

Measures of relationship offer us an idea of how two sets
of scores, or two variables, are related.

How much variance do the two variables share.
How much does one variable overlap another.

Measures of Association: When at least one of the two
variables is ordinal or nominal in scale.
Correlational Measures: When both variables are interval
or ratio scaled (continuous or nearly so).

For the time being, we will do a quick overview of the
Measures of Association and focus more attention on the
Correlational Measures.
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Measures of Association

There are several Measures of Association.

Point-Biserial Correlation (rpb) when one variable is
dichotomous.
Phi Coefficient (φ) when both variables are dichotomous.
Spearman’s rho (ρ) or (rs) and Kendall’s tau (τ ) when one
or both variables are ranked (ordinal).
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Correlational Measures

There are three key Correlational Measures we will cover here.

Covariance (COV )
COVXY where x and y are the two variables we are using.

Correlation; the Pearson Product-Moment Correlation
Coefficient (r )
Adjusted Correlation Coefficient (radj )
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Covariance

The Covariance is a non-standardized measure of relationship;
meaning it can not be used to compare the relationship of two
variables to the relationship of two other variables.

Covariance is not terribly meaningful by itself, but it is used
in calculating other statistics (e.g., correlation).

It is not terribly meaningful because, its scale or metric is
determined by the two specific variables on which it is
calculated.
For this reason, it is not comparable across different pairs
of variables.
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What is Covariance then?

Calculating the covariance gives us a numeric measure of
the degree or strength of relationship between two
variables.

Covariance can range between −∞ and +∞
The larger the number (negatively or positively), the greater
or stronger the relationship.
When covariance is zero, there is no relationship between
the variables; virtually never happens.

The sign associated with a covariance tells us the direction
of the relationship between the two variables.

If the sign is negative, then high scores on one variable are
associated with low scores on the other variable.
If the sign is positive, then high scores on one variable are
associated with high scores on the other variable.
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Calculating Covariance

The definitional formula for calculating the covariance of two
sample variables (X, Y) is:

COVxy =
∑

(X−X)(Y−Y )
n−1

This formula is very similar to the variance formula; for instance
if we swap out all the Y’s in the above formula for more X’s, we
get the variance of X:

S2
X =

∑
(X−X)(X−X)

n−1 =
∑

(X−X)
2

n−1
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Computational formula for Covariance

The computational formula is generally considered more
manageable when calculating by hand.

But; as mentioned previously with standard deviation, both
the computational and definitional formulas provide the
same answer.

COVXY =
∑

XY−
∑

X
∑

Y
n

n−1
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Oil Example sample data: Covariance Calculation

XYi Barrels (X ) Costs (Y ) XY
1 159 520 82680
2 166 570 94620
3 176 510 89760
4 185 560 103600
5 191 560 106960
6 194 530 102820
7 199 560 111440
8 207 580 120060
9 216 550 118800
10 228 560 127680∑

X = 1921
∑

Y = 5500
∑

XY = 1058420

n = 10
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Example Calculation continued

Taking the sums and n from the previous slide, we can use the
computational formula to complete the calculation of
covariance.

COVXY =
∑

XY−
∑

X
∑

Y
n

n−1 =
1058420− (1921)(5500)

10
10−1 ...

COVXY = 1058420−1056550
9 = 1870

9 = 207.78

So, the covariance of X and Y is 207.78; which does not seem
terribly meaningful.

Positive number, indicates that high scores on X are
associated with high scores on Y (and vice versa).
Large number (i.e., far from zero), so the two variables are
likely to be fairly well related.
Beyond that, not much can be said.
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Correlation

The Correlation (r ) is a standardized measure of relationship;
meaning it can be compared across multiple pairs of variables,
regardless of scale.

Correlation is the most frequently used statistic for
assessing the relationship between two variables4.
Correlation allows us to describe the direction and
magnitude of a relationship between two variables.
Correlation is very similar to covariance, indeed we use the
covariance to calculate correlation.
Correlation is used in many inferential statistics and often a
matrix of correlations is the input data used to calculate
them.

4There will be a great deal more discussion of correlation later
in the course.
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Interpretation of Correlation

Once calculated:

Correlation (r ) can range between −1 and +1.
The larger the value (positive or negative), the stronger the
relationship between the variables.
If r is negative, then high scores on one variable are
associated with low scores on the other variable.
If r is positive, then high scores on one variable are
associated with high scores on the other variable.
If r = 0, then there is no relationship between the variables
(virtually never occurs).

The size of r indicates the strength of the relationship and the
sign (positive or negative) indicates the direction of the
relationship.
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Calculating Correlation

Calculating correlation is quite easy, once you have the
covariance.

rXY = COVXY
SX SY

So, given the descriptive statistics from previous slides:
Barrels (X ): SX = 21.66
Costs (Y ): SY = 22.61
and: COVXY = 207.78

rXY = 207.78
(21.66)(22.61) =

207.78
489.73 = 0.424

The correlation is .424 between Barrels and Costs.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Calculating Correlation

Calculating correlation is quite easy, once you have the
covariance.

rXY = COVXY
SX SY

So, given the descriptive statistics from previous slides:
Barrels (X ): SX = 21.66
Costs (Y ): SY = 22.61
and: COVXY = 207.78

rXY = 207.78
(21.66)(22.61) =

207.78
489.73 = 0.424

The correlation is .424 between Barrels and Costs.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Calculating Correlation

Calculating correlation is quite easy, once you have the
covariance.

rXY = COVXY
SX SY

So, given the descriptive statistics from previous slides:

Barrels (X ): SX = 21.66
Costs (Y ): SY = 22.61
and: COVXY = 207.78

rXY = 207.78
(21.66)(22.61) =

207.78
489.73 = 0.424

The correlation is .424 between Barrels and Costs.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Calculating Correlation

Calculating correlation is quite easy, once you have the
covariance.

rXY = COVXY
SX SY

So, given the descriptive statistics from previous slides:
Barrels (X ): SX = 21.66
Costs (Y ): SY = 22.61
and: COVXY = 207.78

rXY = 207.78
(21.66)(22.61) =

207.78
489.73 = 0.424

The correlation is .424 between Barrels and Costs.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Calculating Correlation

Calculating correlation is quite easy, once you have the
covariance.

rXY = COVXY
SX SY

So, given the descriptive statistics from previous slides:
Barrels (X ): SX = 21.66
Costs (Y ): SY = 22.61
and: COVXY = 207.78

rXY = 207.78
(21.66)(22.61) =

207.78
489.73 = 0.424

The correlation is .424 between Barrels and Costs.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

Calculating Correlation

Calculating correlation is quite easy, once you have the
covariance.

rXY = COVXY
SX SY

So, given the descriptive statistics from previous slides:
Barrels (X ): SX = 21.66
Costs (Y ): SY = 22.61
and: COVXY = 207.78

rXY = 207.78
(21.66)(22.61) =

207.78
489.73 = 0.424

The correlation is .424 between Barrels and Costs.

Starkweather Module 3



Intro Classes Properties Summary Central Tendency Dispersion Shape Relationship

What does that mean?

The correlation between Barrels and Costs is 0.424...so what?

We can say that Barrels and Costs are positively related.
Meaning; high scores on one tend to be associated with
high scores on the other.
And, low scores on one tend to be associated with low
scores on the other.

But what of the magnitude? This is a bit more tricky.
Generally, familiarity with recent, similar research will guide
your interpretation of magnitude.

Same field, topic, variables, etc.

In the social sciences, it is common to find correlations
around .400 to .600 referred to as ‘moderate’, ‘good’, or
even ‘strong’ (in the case of .600).
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Taking Correlation a step further.

One very good way of helping yourself to interpret correlation is
to square it.

By squaring the correlation (r2), we can interpret it as the
amount of variance shared between the two variables.

r2 = .4242 = .1798
So, we can say barrels extracted and rig operating costs
share 17.98% of their variance.
Now we have a better understanding of the relationship
between the two variables.
Keep in mind:

Squaring any correlation coefficient makes it smaller (r is
always between -1 and +1).
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Adjusted Correlation

When sample sizes are small, as they are here (n = 10), the
sample correlation will tend to overestimate the population
correlation.

Meaning, r and r2 tend to be larger than they truly are in
the population.
The relationship appears stronger than it actually is in the
population.
So, we generally correct for this problem by adjusting r .

radj =
√

1− (1−r2)(n−1)
n−2
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Adjusting our example correlation

Adjusting our Oil example correlation:

radj =
√

1− (1−r2)(n−1)
n−2 =

√
1− (1−.4242)(10−1)

10−2 = ...√
1− (1−.1798)(9)

8 =
√

1− (.8202)(9)
8 = ...√

1− 7.3818
8 =

√
1− .9227 = ...

√
.0773 = .2780

Our correlation shrank from r = .424 to radj = .278
Shared variance shrank from r2 = .1789 to r2

adj = .0773.
We now have a more accurate sample estimate of the
relationship between Barrels and Costs.
They share 7.73% of their variance (i.e., clearly a
weak relationship).
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1− (1−.1798)(9)

8 =
√

1− (.8202)(9)
8 = ...√

1− 7.3818
8 =

√
1− .9227 = ...

√
.0773 = .2780

Our correlation shrank from r = .424 to radj = .278
Shared variance shrank from r2 = .1789 to r2

adj = .0773.
We now have a more accurate sample estimate of the
relationship between Barrels and Costs.
They share 7.73% of their variance (i.e., clearly a
weak relationship).
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Additional Considerations with Measures of
Relationship

Measures of relationship tell us something about whether or not
two (or more) variables share variance.

They do NOT tell us what causes the relationship!
Nor do they tell us if one variable causes another!

You will often hear this: “Correlation does not equal
causation!”

X may cause Y
Y may cause X
Z may be causing the relationship between X and Y

Although, we do tend to use correlation (and other
measures of relationship) in the process of investigating
causal relationships.
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Properties of Statistics

There are 4 properties we use to evaluate statistics.

Sufficiency
Unbiasedness
Efficiency
Resistance

Some of them you are already familiar with...
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Sufficiency

The Sufficiency of a statistic refers to whether or not it makes
use of all the information contained in a sample to estimate its
corresponding parameter.

As an example, consider measures of central tendency:
The mean is very sufficient because, it uses all the scores
when being calculated.
The median and mode are not very sufficient because, they
only use one or two scores.
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Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1
Population variance: σ2 =

∑
(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).

Recall how we calculated:
Sample variance: S2 =

∑
(X − X )2/n − 1

Population variance: σ2 =
∑

(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1
Population variance: σ2 =

∑
(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1

Population variance: σ2 =
∑

(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1
Population variance: σ2 =

∑
(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1
Population variance: σ2 =

∑
(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).

For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1
Population variance: σ2 =

∑
(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.

When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Unbiasedness

The Unbiasedness refers to how well a sample statistic
represents its associated population parameter.

As we saw with correlation, some statistics (r ) are more
biased than others (radj ).
Recall how we calculated:

Sample variance: S2 =
∑

(X − X )2/n − 1
Population variance: σ2 =

∑
(X − µ)2/N

This is due to something we will discuss more later,
degrees of freedom (df).
For now, consider this: we use N in the population formula
because, we have all of the scores.
When dealing with samples, we do not have all the scores
(of the defined population) and we make an
adjustment, dividing by n − 1.

Starkweather Module 3



Intro Classes Properties Summary Sufficiency Unbiasedness Efficiency Resistance

Efficiency

The Efficiency refers to how much a statistic can change from
sample to sample. An efficient statistic does not change.

Consider the sample mean: X =
∑

X/n
If we took an infinite number of repeated samples from a
symmetrical population distribution with µ in the center:

The mean of each sample would be fairly close to µ and the
mean of all those sample means would be µ.

The key to that statement being true is “symmetrical
population distribution with µ in the center”.

Extremely high and low scores (those farthest from µ) are
rare when compared to the number of scores near µ.
Therefore, we can expect most of those repeated samples
to have a mean close to µ, because most of the scores in
general (in the population) are close to µ.
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Resistance

The Resistance refers to how resistant a statistic is to outliers
(extreme scores).

If extreme scores do not influence the statistic, then the
statistic is resistant.
Again, consider measures of central tendency: Mo, Mdn, X
Both Mo and Mdn only consider the very center of a
distribution, so they are very resistant.
X is very sensitive to outliers, they pull the mean toward
them thus making the mean not very resistant.
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Summary of Module 3 (continued on next slide)

Introduced:

The context of an example study
Descriptive Statistics

Classes of Descriptive Statistics
Central Tendency

Mode
Median
Mean

Dispersion
Range
Sums of Squares
Variance
Standard Deviation
Coefficient of Variation

Shape
Skewness
Kurtosis
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Summary continued

Classes of Descriptive Statistics (continued)

Relationship
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Adjusted Correlation

Properties of statistics
Sufficiency
Unbiasedness
Efficiency
Resistance
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This concludes Module 3

Next time Module 4.
Next time we’ll begin covering “The Normal Curve”.
Until next time; have a nice day.

These slides initially created on: September 16, 2010
These slides last updated on: September 23, 2010

The bottom date shown is the date this Adobe.pdf file was
created; LATEX5 has a command for automatically inserting
the date of a document’s creation.

5This document was created in LATEX using the Beamer package
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