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1 One Sample t Test Example
Step 1: Define the populations and restate the research question as null and alternative hypotheses.

• Research question: Does this class of four students get less sleep than all UNT students
(µ = 6.08 hours)?

• Population 1: Students in this class.

• Population 2: All other UNT students.

H0 = µ1 ≥ µ2

H1 = µ1 < µ2

• Note, the Alternative hypothesis (H1) is directional: one-tailed test.

Step 2: Comparison Distribution

Table 2: Comparison dist. (estimate σ with SM )

X X X −X
(
X −X

)2
5 4 1 1
3 4 -1 1
6 4 2 4
2 4 -2 4
16 SOS = 10

S2 =

∑
(X−X)

2

n−1 = 10
4−1 = 3.33

S2
M = S2

n = 3.33
4 = 0.8325

SM =
√
S2
M =

√
0.8325 = 0.912

Step 3: Determine the critical score

• Determine the cutoff sample score.

• Significance level = .05, one-tailed test, df = 4− 1 = 3

• Look in the appropriate column of the t table.

– One-tailed, significance level = .05

http://www.math.unb.ca/˜knight/utility/t-table.htm
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• Critical t value is 2.353

• Which means, we need tcalc to be greater than |2.353| (absolute value of 2.353) to find a
significant difference.

Step 4: Calculate t (tcalc)

• From previous calculating, we have:

X = 4.00, SM = 0.912

• So, we can plug in the values, including the population mean which was given.

tcalc =
X−µ
SM

= 4.00−6.08
0.912

= −2.08
0.912

= −2.28

Step 5: Compare and Make a Decision

• Since tcalc = | − 2.28| < |2.353| = tcrit we fail to reject the null hypothesis.

• The interpretation is...Students in this class (M = 4.00) do not sleep significantly fewer
hours than all other students at UNT (µ = 6.08), t(3) = −2.28, p > .05.

• Do not be tempted to say something like; nearly significant, just missed significance, etc.

– Although the sample mean is numerically smaller, it is not statistically significantly
smaller.

– Remember, we have a very small sample size, so we would need a very large mean
difference to achieve significance (or a larger sample).

Effect Size

• The appropriate effect size measure for the one sample t test is Cohen’s d.

• Calculation of d in its general form (as it was with the Z-test) is:

d = X−µ
σ

• However, we do not know the population standard deviation (σ) in the t situation, so we
estimate with S =

√
S2

d = X−µ
S

= 4−6.08√
3.33

= −2.08
1.82

= 1.143

• So, although we have a large effect size (standardized difference), we did not achieve sta-
tistical significance. However, keep in mind that with a larger sample, this amount of mean
difference may have been significant.

– Statistical significance is directly tied to sample size, effect size is not.
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Calculating a CI

• In this example, we are calculating a 95% confidence interval (CI95) because our critical
value was based on a significance level of .05 (1 - .05 = .95 or 95%).

• tcrit = 2.353, SM = 0.912, X = 4.00

UL = +2.353 ∗ 0.912 + 4.00 = 6.146
LL = −2.353 ∗ 0.912 + 4.00 = 1.854

• If we were to take an infinite number of samples of students in this class, 95% of those
samples’ means would be between 6.146 and 1.854 hours of sleep.

– Remember, the population mean is fixed (but unknown); while each sample has its own
mean (sample means fluctuate).

CI95 Considerations and Interpretations
The current example resulted in CI95 = 6.146 : 1.854.

• Notice the population 2 mean (µ2 = 6.08), representing all UNT students, falls inside our
interval.

– Recall, we did not reject the null; meaning our sample did come from population 2, not
a distinct population (i.e. population 1).

• If µ2 were greater than 6.146, then we would have rejected the null hypothesis and inferred
that our sample came from population 1; meaning, population 1 would have been signifi-
cantly different from population 2.

• Important: the interval is not interpreted as “we are 95% confident that population 1’s mean
is between 6.146 and 1.854.”

– We are dealing with a sample; we do not know what
µ1 is; so, we can not know what that interval would be.

2 Dependent Samples t Test Example
Step 1: State the Null and Alternative Hypotheses
Define the populations: Relationship Satisfaction = RS

• Population 1: RS prior to college separation.

• Population 2: RS after the first semester.

State the Hypotheses:

• The null hypothesis is: there will be no difference between the means of the ratings (before
college vs. after the first semester).
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H0 : µ1 − µ2 ≤ 0 or µD ≤ 0

• The alternative hypothesis is: there will be a significant decrease in the ratings.

H1 : µ1 − µ2 > 0 or µD > 0

Note the directional alternative hypothesis; pay careful attention to how we specified the hypothe-
ses in symbols.

• If the alternative hypothesis expected an increase,
then H1 : µ1 − µ2 < 0 or µD < 0

Step 2: Comparison Distribution (estimate σ with SM ).

Pair Before After D D (D −D)
(
D −D

)2
1 40 32 8 8 0 0
2 38 31 7 8 -1 1
3 36 30 6 8 -2 4
4 42 31 11 8 3 9
4 32 SOS = 14

D =
∑

(D)/nD = 32/4 = 8

S2 = SOS/df = 14/nD − 1 = 14/3 = 4.67

S2
M = S2

nD
= 4.67

4 = 1.1675

SM =
√

S2
M =

√
1.1675 = 1.08

Step 3: Determine the critical value

• Deja-vu...?

• Determine the critical t value.

• Significance level = .05, one-tailed test, df = nD − 1 = 3.

• Look in the appropriate column of the t table.

– One-tailed, significance level = .05

http://www.math.unb.ca/˜knight/utility/t-table.htm

• Critical t value is 2.353

• Which means, we need tcalc to be greater than |2.353| (absolute value of 2.353) to find a
significant difference.

Same critical value we used with the One Sample t Test.
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Step 4: Calculate t

• The general t formula:

t = X−µ
SM

• Remember we are dealing with the difference scores (D) but the t formula is essentially the
same as above.

• From previous calculations, we have: D = 8, µD = 0, SM = 1.08

t = D−µD
SM

= 8−0
1.08

= 7.41

• So, our tcalc = 7.41 which is fairly large.

Step 5: Compare and make a decision.

• Since tcalc = 7.41 > 2.353 = tcrit we reject the null hypothesis.

• The initial interpretation is... There was a significant decrease in ratings of relationship
satisfaction from before college separation (M = 39, SD = 2.58) to after the first semester
of college separation (M = 31, SD = 0.82), t(3) = 7.41, p = .005 (one-tailed).

– One could also state the results as; t(3) = 7.41, p < .05 because .05 was our signifi-
cance level.

– The 3 above is the degrees of freedom (df ).

• At this point in the course, you should be able to calculate the means and standard deviations
of each group of scores; however the exact p value was obtained by verifying the results
above in SPSS (see below).

Effect Size

• Recall, Cohen’s d:

d = X−µ
σ
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• Here, we do not know σ so we use S to estimate (not SM because it is influenced heavily by
sample size).

– Effect sizes are not influenced by sample size.

• Also, because we are dealing with difference scores, we use slightly different symbols in the
formula:

d = D−µD
S

Effect Size continued

• Cohen’s d for difference scores:

d = D−µD
S

• We have S2 = 4.67 from above, which leads to an estimate of σ:

S =
√
4.67 = 2.16

• Which in turn, leads to d:

d = D−µD
S

= 8−0
2.16

= 3.70

• A large effect size.

Calculating a CI
Calculating a Confidence Interval with D

• Using essentially the same procedures we used with the one sample t test, we can calculate
the lower limit (LL) and upper limit (UL).

• Recall, the general formulas for a confidence interval are: LL = (-crit)*(SE) + mean and UL
= (+crit)*(SE) + mean

• When in the Dependent Samples situation, we simply use the difference score mean.

LL = −tcrit ∗ SM +D = −2.353 ∗ 1.08 + 8 = −2.541 + 8 = 5.459

UL = +tcrit ∗ SM +D = +2.353 ∗ 1.08 + 8 = +2.541 + 8 = 10.541

Interpretation of CI95

• In this example, we calculated a 95% confidence interval (CI95) because our critical value
was based on a significance level of .05.

LL = −2.353 ∗ 1.08 + 8 = 5.459
UL = +2.353 ∗ 1.08 + 8 = 10.541

• If we drew an infinite number of samples of young adults’ relationship satisfaction ratings,
95% of those samples’ difference score means would be between 5.459 and 10.541.

– Remember, the population difference score mean is fixed (but unknown); while each
sample has its own difference score mean (samples fluctuate).
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3 Independent Samples t Test Example
Step 1

• Define the populations and restate the research question as null and alternative hypotheses.

• Population 1: Americans who watch The Daily Show.

• Population 2: Americans who watch The O’Reilly Factor.

H0 : µ1 ≤ µ2 or H0 : µ1 − µ2 ≤ 0

H1 : µ1 > µ2 or H1 : µ1 − µ2 > 0

• In terms of knowledge about current events.

• Notice the directional alternative hypothesis (H1) which indicates a one-tailed test.

The Daily show group’s data

Table 3: Daily Show Group

X1 X1 X1 −X1

(
X1 −X1

)2
6 6.75 -0.750 0.563
6 6.75 -0.750 0.563
9 6.75 2.250 5.063
8 6.75 1.250 1.563
4 6.75 -2.275 7.563
6 6.75 -0.750 0.563
7 6.75 0.250 0.063
8 6.75 1.250 1.563
54 =

∑
X1 SOS1 = 17.50

8 = n1

S2
1 =

∑
(X1−X1)

2

n1−1 = SOS1
df1

= 17.50
8−1 = 17.50

7 = 2.50

The Factor show group’s data

Table 4: Factor Show Group
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X2 X2 X2 −X2

(
X2 −X2

)2
5 3.875 1.125 1.266
4 3.875 0.125 0.016
3 3.875 -0.875 0.766
1 3.875 -2.875 8.266
5 3.875 1.125 1.266
6 3.875 2.125 4.516
3 3.875 -0.875 0.766
4 3.875 0.125 0.016
31 =

∑
X2 SOS2 = 16.875

8 = n2

S2
2 =

∑
(X2−X2)

2

n2−1 = SOS2
df2

= 16.875
8−1 = 16.875

7 = 2.411

Step 2(a)

• 2. Determine the characteristics of the comparison distribution.

• dft = df1 + df2 = n1 + n2 − 2 = 8 + 8− 2 = 14

• And from above, S2
1 = 2.500 and S2

2 = 2.411

• (a) Calculate the pooled estimate of the population variance.

S2
p = (S2

1) ∗ df1dft + (S2
2) ∗ df2dft = (2.500) ∗ 7

14
+ (2.411) ∗ 7

14
= 2.4555

• So, S2
p = 2.46

Step 2(b)

• (b) Calculate the variance of each distribution of means:

S2
M1 =

S2
p

n1
= 2.46

8
= 0.3075

S2
M2 =

S2
p

n2
= 2.46

8
= 0.3075

• Please note; if the groups were different sizes, the variances of each distribution of means
would be different.

Step 2(c) and Step 2(d)

• (c) Calculate the variance of the distribution of differences between means:

S2
dif = S2

M1 + S2
M2 = 0.3075 + 0.3075 = 0.615

• So, S2
dif = 0.62
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• (d) Calculate the standard deviation of the distribution of differences between means:

Sdif =
√
S2
dif =

√
.62 = 0.78

• So, Sdif = 0.78

Step 3

• 3. Determine the critical sample score on the comparison distribution at which the null
hypothesis should be rejected.

– Significance level = .05

– Two-tailed test (based on H1).

– dft = n1 + n2 − 2 = 7 + 7− 2 = 14

http://www.math.unb.ca/˜knight/utility/t-table.htm

• tcrit = 1.761

Step 4

• 4. Determine the sample’s score on the comparison distribution:

– Compute tcalc

t = X1−X2

Sdif
= 6.75−3.875

0.78
= 3.69

• So, tcalc = 3.69

Step 5

• 5. Compare the scores from Step 3 and Step 4, and make a decision to reject the null hypoth-
esis or fail to reject the null hypothesis.

• Because; tcalc = 3.69 > 1.761 = tcrit we reject the null hypothesis and conclude there was
a statistically significant difference between the two show groups.

– But, you should know by now, that’s not the whole story.

Effect Size
Calculating Effect Size for two Independent Groups

• Recall, the general formula for Cohen’s d.

d = µ1−µ2
σ

• In the current (independent groups) situation, we have:
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d = X1−X2

Sp
= 6.75−3.875√

2.46
= 2.875

1.57
= 1.83

• So, the effect size is fairly large; d = 1.83

Calculating a CI
Calculating a Confidence Interval

• Note, we are calculating the interval on the difference between means.

• Recall there are two parts of a confidence interval, the upper limit (UL) and the lower limit
(LL).

• The general form of the equations for each limit are:

LL = (−crit) ∗ (SE) +mean
UL = (+crit) ∗ (SE) +mean

• In the current situation for the differences between means:

LL = (−tcrit) ∗
(
Sdif

)
+
(
X1 − X2

)
= −1.761 ∗ 0.78 + (6.75 − 3.875) = −1.374 + 2.875 = 1.501

UL = (+tcrit) ∗
(
Sdif

)
+
(
X1 − X2

)
= +1.761 ∗ 0.78 + (6.75 − 3.875) = +1.374 + 2.875 = 4.249

LL = 1.50
UL = 4.25

Interpretation of Confidence Interval

• Recall, we had a significance level of .05 (tcrit), so we conducted a 95% confidence interval
(CI95) on the differences between means.

• The Lower Limit was 1.50 and the Upper Limit was 4.25.

• So, if we drew an infinite number of random samples of viewers of each show, 95% of the
differences between means would be between 1.50 and 4.25.

– Remember, the mean of the population of differences between means is fixed (but un-
known); while each sample has its own differences between means (samples fluctuate).

4 Alternative Calculation of Independent Samples t Test
All of what was covered above (i.e., the calculations of each of the three t tests) used the definitional
formula. Recall, definitional formulas follow the definition of the concept. Computational formulas
are equivalent (i.e., they produce the same answers), but they are supposed to make calculation
easier. Below you will find an example of the computational formula for the Independent Samples
t Test. The computational formula is applied to the same data used above, therefore, the same
answer is produced.
The Daily Show Group is Group 1; meaning all the data below which has a ‘1’ subscript belongs
to this group. The O’Reilly Factor Show Group is Group 2; meaning all the data below which has
a ‘2’ subscript belongs to this group.
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Table 5: Both Groups’ Data

X1 X1 X1 −X1

(
X1 −X1

)2
X2 X2 X2 −X2

(
X2 −X2

)2
6 6.75 -0.750 0.563 5 3.875 1.125 1.266
6 6.75 -0.750 0.563 4 3.875 0.125 0.016
9 6.75 2.250 5.063 3 3.875 -0.875 0.766
8 6.75 1.250 1.563 1 3.875 -2.875 8.266
4 6.75 -2.275 7.563 5 3.875 1.125 1.266
6 6.75 -0.750 0.563 6 3.875 2.125 4.516
7 6.75 0.250 0.063 3 3.875 -0.875 0.766
8 6.75 1.250 1.563 4 3.875 0.125 0.016
54 =

∑
X1 SOS1 = 17.50 31 =

∑
X2 SOS2 = 16.875

8 = n1 8 = n2

S2
1 =

∑
(X1−X1)

2

n1−1 = SOS1
df1

= 17.50
8−1 = 17.50

7 = 2.50

S2
2 =

∑
(X2−X2)

2

n2−1 = SOS2
df2

= 16.875
8−1 = 16.875

7 = 2.411

tcalc =
X1−X2√√√√√√√

(n1−1)∗(S
2
1)+(n2−1)∗(S

2
2)

n1+n2−2

∗
 1
n1
+ 1
n2



tcalc =
6.75−3.875√√√√√

(8−1)∗(2.5)+(8−1)∗(2.411)
8+8−2

∗
[
1
8+

1
8

]

tcalc =
2.875√

[17.5+16.877
14 ]∗[.125+.125]

tcalc =
2.875√

[34.37714 ]∗[.25]

tcalc =
2.875√

[2.4555]∗[.25]

tcalc =
2.875√
.6138

= 2.875
.78 = 3.686

tcalc = 3.686
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