next up previous contents
Next: Dependent Up: Module 8: Introduction to Previous: Contents   Contents

One Sample t Test

1.1. The t distribution

One Sample t test

Degrees of Freedom (df)

We call this progressive correction the degrees of Freedom (df).

Comparison Distribution Changes

An Excerpt from the t distribution table

Table 1: t Critical Values
1-tailed df .10 .05 .025 .01
2-tailed df .20 .10 .05 .02
1 3.078 6.314 12.710 31.821
2 1.886 2.920 4.303 6.965
3 1.638 2.353 3.182 4.541
4 1.533 2.132 2.776 3.747
5 1.476 2.015 2.571 3.365
6 1.440 1.943 2.447 3.143
etc.


Degrees of freedom in the left column and significance level along the top rows.

Calculating the One Sample t

1.2. One Sample t-test Example

NHST Example

Research question:

Step 2: Comparison Distribution

Table 2: Comparison dist. (estimate \(\sigma\) with \(S_M\))
\(X\) \(\overline{X}\) \(X - \overline{X}\) \(\left(X - \overline{X}\right)^2\)
5 4 1 1
3 4 -1 1
6 4 2 4
2 4 -2 4
16 \(SOS = 10\)


\(S^2 = \frac{\sum{\left(X - \overline{X}\right)}^2}{n - 1} = \frac{10}{4 - 1} = 3.33\)


\(S_M^2 = \frac{S^2}{n} = \frac{3.33}{4} = 0.8325\)


\(S_M = \sqrt{S_M^2} = \sqrt{0.8325} = 0.912\)

Step 3: Determine the critical score

Step 4: Calculate t (\(t_{calc}\))

Step 5: Compare and Make a Decision

1.3. Effect Size

Effect Size

1.4. Using Delta for Statistical Power

Statistical Power and Sample Size

Statistical Power and Sample Size

1.5. \(CI_{95}\)

Calculating a Confidence Interval

\(Upper Limit (UL) = (+critical value)*(SE)+\overline{X}\)
\(Lower Limit (LL) = (-critical value)*(SE)+\overline{X}\)

Calculating a CI

\(CI_{95}\) Considerations and Interpretations

The current example resulted in \(CI_{95} = 6.146:1.854\).

1.6. Summary of Section 1

One Sample t test Usage?

Unfortunately...

Summary of Section 1: One Sample t Test

Section 1 covered the following topics:


next up previous contents
Next: Dependent Up: Module 8: Introduction to Previous: Contents   Contents
jds0282 2010-10-15