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The RSS short courses

The Research and Statistical Support (RSS) office at the
University of North Texas hosts a number of “Short Courses”. A
list of them is available at:

http://www.unt.edu/rss/Instructional.htm
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Regression relies on Correlation

Regression is based on correlation.

Before we can discuss regression, we should review
correlation.
The following section offers a brief review of correlation.
If anything regarding correlation is unclear, it is suggested
you review the section on Measures of Relationship
contained in Module 3: Describing Data.
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What is Correlation?

Correlation is a statistical technique used to measure and
describe a relationship between two variables.

Typically, we will be using two continuous (or nearly so)
variables; for example, depression scores, reaction time,
age, heart rate, number of words or letters or symbols
recalled, etc.

However, you can have categorical variables in correlation
(e.g., point biserial correlation).
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How do we describe the relationship?

Correlation coefficient (Pearson product moment
correlation) uses the symbol r
Correlation can be called linear and non-linear; here we
focus on the linear relationship.
r can be positive or negative and the value can only be
between −1 and +1.
If there is no relationship between the variables, then r = 0

This never happens with real data.

The stronger the relationship between the variables, the
greater the absolute value of r
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Calculating r and radj

Covariance: the sum of X minus its mean times Y minus its
mean, divided by degrees of freedom (n - 1).

COVXY =
∑
(X−X)(Y−Y)

n−1

Correlation: covariance of X and Y divided by the standard
deviation of X times the standard deviation of Y.

r = COVXY
SX SY

Adjusted Correlation:

radj =

√
1− (1−r2)(n−1)

n−2
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Interpreting r

If the value of r is positive, it indicates that as scores on
one variable increase, the scores on the other variable
increase (positive correlation).

Also, as the scores on one variable decrease, the scores on
the other variable tend to decrease (i.e. high with high and
low with low).

If the value of r is negative; it indicates that as scores on
one variable increase, the scores on the other variable
decrease (negative correlation).

Also, as the scores on one variable decrease, the scores on
the other tend to increase (i.e. high with low and low with
high).

The closer the value of r is to zero, the weaker the
relationship.
The statistical significance of a correlation is
determined by comparing it to zero.
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Positive Correlation
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Negative Correlation
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Correlation and Causation

Say this three times: “Correlation does not mean
causation”!
Causality cannot be inferred from correlation alone.
Three things may be able to explain the relationship:

X may cause Y
Y may cause X
Z (a third unknown variable) may be causing the
relationship between X and Y.
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Things that affect correlation

Restriction of Range.
Narrow distributions detract from the accuracy of r

Heterogeneous Sub-samples.
When data contains two rather different (unrecognized)
groups.

Large Samples.
Any two variables are significantly correlated with a large
enough sample.

Outliers.
Outliers can pull a distribution’s mean and bias correlation.
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Introduction to simple (bi-variate) Regression*

Bivariate linear regression is the least complex regression.

Attempting to predict scores on one variable, using the
scores on another variable.
It is virtually never used in research, but offers us the
opportunity to introduce the principles of Regression which
serve as the basis for more complex regression analysis
(e.g., multiple regression).
Multiple regression (regression analysis with more than
one predictor) is extremely popular and very frequently
used in research.

*These slides were adapted with gracious permission from those
produced by teaching and slide Guru, Dr. Mike Clark.
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From Correlation to Regression

Correlation describes a relationship between two variables
and NHST can be applied to determine if that relationship
is significant.
Regression uses that information in an attempt to predict
scores.
In our scatter plots; the variable on the X-axis (the
horizontal axis in Cartesian plane space) is called the
Predictor
The variable on the Y-axis (the vertical axis) is called the
Outcome.
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The formula for a Straight line

Only one possible straight line can be drawn once the
slope and Y-axis intercept are specified.
The formula for a straight line is:
Y = a + bX which is sometimes expressed as Y = bX + a

Y is the value(s) of the variable on the vertical axis (Y-axis).
a is the regression constant, also called the y-intercept (if X
= 0, the value of the corresponding Y score).
b is the regression coefficient, also called the slope of the
line; which is rise over run in decimal form.
X is the value(s) of the variable on the horizontal axis
(X-axis).

Once this line is specified, we can calculate the
corresponding value of Y for any new value of X.
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The Line of Best Fit, the Linear Prediction Rule

Real data do not conform perfectly to a straight line.

The best fit straight line is that which minimizes the
amount of variation in data points from the line (least
squares regression line).

We call this line, the Least Squares Regression Line.

The equation for this line can be used to predict or estimate
an individual’s score on Y based on his or her score on X.

Ŷ = bX + a

Where Ŷ is the predicted value of Y .
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Least Squares Modeling

When the relations between variables are expressed in this
manner, we call the relevant equations mathematical
models.

The intercept and coefficient are called parameters of a
model.
We assume that our models are causal models, such that
the variable on the left-hand side of the equation is being
caused by the variable(s) on the right side (not to be
confused with establishing causality; X still does not
necessarily cause Y).
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Terminology

When the values of Y in these models are called predicted
values (sometimes abbreviated as Y-hat), they are given
the symbol Ŷ .

They are the values of Y that are implied or predicted by
the specific parameters of the model and the values of X.
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Parameter Estimation

Up to this point, we have assumed that our basic models
are correct.

There are two important issues we need to deal with
however:

Is the basic model correct (regardless of the value of the
parameters)? That is, is a linear, as opposed to a
quadratic/curvilinear, model the appropriate model for
characterizing the relationship between two variables?
If the model is correct, what are the most correct parameter
values for the model?
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Parameter Estimation continued

The process of obtaining the correct parameters
(assuming we are working with the right model) is called
Parameter Estimation.

Often, theories specify the form of the relationship rather
than the specific values of the parameters.
The parameters themselves, assuming the basic model is
correct, are typically estimated from the data. We refer to
the estimation processes as calibrating the model.
We need a method for choosing parameter values which
will give us the best representation of the data points.
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Simple Parameter Estimation example data

We collect scores from 4 participants on two variables.

The scores on the x variable are: -2, -1, 1, 2
The scores on the y variable are: -2, 0, 4, 6
When plotted, those data given in ‘xy’ coordinates are:

(-2, -2), (-1, 0), (1, 4), (2, 6)
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Parameter Estimation example

Assuming we believe
there is a linear
relationship between x
and y.
Which set of parameter
values will bring us
closest to representing
the data accurately?
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Parameter Estimation example

Model ŷ = 2− 2x in light
blue
Pick some parameter
values and see how well
the model does.
Quantify “how well” with
the difference between
the model’s predicted
values (ŷ ) and the actual
values (y)
This difference, (y − ŷ ) is
called error in prediction
or residual.
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Parameter Estimation example

Model ŷ = 2− 2x in light
blue
So, for the first data
point, x = -2
The model predicts ŷ = 6
because: ŷ = 2− 2 (−2)
The residual (y − ŷ ) =
−2− 6 = −8.
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Parameter Estimation example

ŷ = 2− 1x
Try a different value for b
and see what happens.
The predicted values are
getting closer, but still off
quite a bit.
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Parameter Estimation example

ŷ = 2− 0x
Again, try a different
value for b and see what
happens.
The model is getting
better (smaller
residuals), but can still
be improved.
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Parameter Estimation example

ŷ = 2 + 1x
Again, try a different
value for b and see what
happens.
The model is looking
much better.
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Parameter Estimation example

ŷ = 2 + 2x
Again, try a different
value for b and see what
happens.
Perfect.
Zero residuals!
Of course, this never
happens with real data.
There will always be
some residual.
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Parameter Estimation

In estimating the parameters of our model, we are trying to
find a set of parameters that minimizes the residuals and
therefore, minimizes the error variance.

In other words, we want the error variance value:
∑
(y−ŷ)

2

n
to be as small as it possibly can be.
The process of finding this minimum value is called
Least-squares Estimation.

It represents the ‘least’ sum of the squared-deviations or
the least squared residuals; the smallest error variance.

This is why you will often hear researchers refer to
regression as Ordinary Least-Squares (OLS) regression.
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Estimate b

Estimating the Slope (the regression coefficient)

b = COV (X ,Y )
var(X) = COVXY

S2
X

Formula is the same as:

b =
∑
(X−X)(Y−Y)

SOSX
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Estimating a

Estimating the Y-intercept: a = Y − bX

Where the means are based on the sets of Y and X data
values and b is the slope.
These calculations ensure that the regression line passes
through the point on the scatterplot defined by the two
means.
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Parameters estimates and Correlation

Alternatively, slope can also be expressed as:

b = r
(

SY
SX

)
So, by substituting; we get:

Ŷ = r
(

SY
SX

)
X + Y − r

(
SY
SX

)
X

Which is the same as:

Ŷ = bx + a
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Ŷ = r
(

SY
SX

)
X + Y − r

(
SY
SX

)
X

Which is the same as:
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Standardized vs. Unstandardized

Regression equations can be standardized (i.e. like
standard scores / Z-scores).

ZY = β ∗ ZX

Transforming our raw scores into Z-scores, results in a
different regression coefficient, called beta.

Symbol: β
It is more commonly used in multiple regression.

Remember, Z-scores are also called ‘standard scores’, so
we would have a standardized regression coefficient or
beta coefficient.
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Standardized Regression Coefficient

Standardized slope is often given in computer output, and
will have added usefulness within multiple regression.

When normally distributed scores are changed into
Z-scores, the mean is 0 and the standard deviation is 1.
Beta is interpreted as 1 standard deviation unit of change
in X leads to a β standard deviation unit change in Y.
In simple (bi-variate) regression, r = β meaning; the
correlation between the predictor variable and the outcome
variable equals the standardized regression coefficient (β).
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Recall r2 and r2
adj from Module 3.

Earlier (a few slides up) we mentioned error variance.

Error variance refers to the residuals, or error in prediction;
how far off our regression line are the observed values of Y.
Consider this; error variance is also the amount of variance
in the outcome (Y) which is not accounted for by our
predictor (X).
The variance accounted for by our predictor variable is r2,
which we know is biased and therefore we use r2

adj instead.

So, r2 and r2
adj can be considered effect size measures of

our regression model.
Reflecting how well our model (with its parameters)
fits the data.
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Interpreting a Regression Summary

Intercept (a)

Value of Y if X = 0
Often not meaningful, particularly if a zero value on X is
practically impossible (e.g. IQ scores).

Slope (b)
Amount of change in Y seen with a 1 unit change in X.

Standardized regression coefficient (β)
Amount of change in Y in standard deviation units with a 1
standard deviation unit change in X.
In simple (bi-variate) regression, β = r

Model Fit
r2 and r2

adj reflect the proportion of variance in Y explained
by X.

Same as η2 in ANOVA.
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Speaking of ANOVA...

Determining if the Regression Model is significant.

We have determined the form of the relationship
(Y = aX + b) and its strength (r or radj ), as well as the
Model’s effect size (variance of the outcome accounted for
by the predictor using r2 or r2

adj ).

But, does a prediction based on this model do a better job
than just predicting the mean of Y for any new value of X?

After all; if Y is normally distributed, then Y is our best
guess for an unknown score on it.

ANOVA is used to answer that question.
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Sums of (regression) Squares

We can calculate an ANOVA for testing whether or not r2 is
significantly different from 0 using the different partitions of
variance discussed above.

Sums of Squares Predicted. Variability of Y accounted for
by X:

SOSŶ =
∑(

Ŷ − Y
)2

Sums of Squares Error or Sums of Squares Residual.
Variability of Y not accounted for by X (error variance):

SOSe or SOSresid =
∑(

Y − Ŷ
)2

Sums of Squares Y or Sums of Squares Total. The
variability of Y.

SOSY =
∑(

Y − Y
)2
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SOSŶ =
∑(
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)2

Sums of Squares Y or Sums of Squares Total. The
variability of Y.

SOSY =
∑(

Y − Y
)2

Starkweather Module 10.1



Correlation Review Regression NHST 10.1 Summary

Sums of (regression) Squares

We can calculate an ANOVA for testing whether or not r2 is
significantly different from 0 using the different partitions of
variance discussed above.
Sums of Squares Predicted. Variability of Y accounted for
by X:

SOSŶ =
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Regression (ANOVA) Summary Table

Source SOS df MS Fcalc

Predicted SOSŶ =
∑(

Ŷ − Y
)2

1 SOSŶ
dfŶ

MSŶ
MSe

Error SOSe =
∑(

Y − Ŷ
)2

n − 2 SOSe
dfe

Total SOSY =
∑(

Y − Y
)2

n − 1
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Testing the significance of b

We can perform a simple t test of the regression coefficient
(b), if we first compute the standard error of the estimate
for it: SY .X

SY .X =

√∑(
Y−Ŷ

)2

n−2

Then, we calculate the standard error of b: Sb

Sb = SY .X
SX∗
√

n−1

Then, we can calculate the t (keep in mind, the population
value of b is unknown, we can use the symbol b∗ for it):

t = b−b∗
Sb

= b−0
SY .X

SX ∗
√

n−1

=
(b)(SX )(

√
n−1)

SY .X
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t test of b

Using df = n − 2 we can find a critical value in the t
distribution to determine if our b is significantly different
from zero.

http://www.math.unb.ca/˜knight/utility/t-table.htm

Then, using the tcrit from the table, we can create a
confidence interval for b
Recall the general formulas for the Lower Limit (LL) and
Upper Limit (UL):

LL = −crit ∗ SE + mean
UL = +crit ∗ SE + mean

Which become the following for the current situation:
LL = −tcrit ∗ Sb + b
UL = +tcrit ∗ Sb + b
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LL = −crit ∗ SE + mean
UL = +crit ∗ SE + mean

Which become the following for the current situation:
LL = −tcrit ∗ Sb + b
UL = +tcrit ∗ Sb + b
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Correlation Review Regression NHST 10.1 Summary

Assumptions

The assumptions for correlation and regression vary based
on what is being done toward the study’s goals.

r and r2 are purely descriptive statistics and therefore, not
reliant on assumptions.

However, both variables (X and Y) should be continuous or
nearly so and they should be linearly related (i.e. not
curvilinearly).

If the goal of the study is to make inferences about how
well our model predicts or the study seeks to use
hypothesis testing (r2 6= 0 or b 6= 0), then the assumptions
should be met.

X and Y pairs should be randomly drawn samples from well
defined populations.
Homogeneity of Variances (the variances of each
variable should be similar).
Normality (both variables should be normally
distributed).
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Correlation Review Regression NHST 10.1 Summary

Additional Considerations

Recall from correlation, there are several things which
affect correlation; which also then affect regression
analysis.

Restriction of Range.
Narrow distributions detract from the accuracy of r

Heterogeneous Sub-samples.
When data contains two rather different (unrecognized)
groups.

Sample Size.
Any two variables are significantly correlated with a large
enough sample.
Small samples render correlation inaccurate (use G-power to
calculate the appropriate sample size).

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/

Outliers.
Outliers can pull a distribution’s mean and bias
correlation.
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Correlation Review Regression NHST 10.1 Summary Data Steps CI Scatter Plots

Example Data and Preliminary Calculations

Students (n = 10) were randomly sampled, then their
Stress (X) and Achievement (Y) levels were recorded.

Stress (X) Achievement (Y)∑
X = 1400.53

∑
Y = 4838.48

X = 140.053 Y = 483.848

SX = 27.866 SY = 39.878

S2
X = 776.541 S2

Y = 1590.255

∑(
X − X

)(
Y − Y

)
= 5145.125

Data on the next slide.
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code X X − X Y Y − Y
(

X − X
)(

Y − Y
)

16 151.53 11.477 475.92 -7.928 -90.990
20 135.97 -4.083 510.29 26.442 -107.963
28 206.71 66.657 568.19 84.342 5621.985
33 107.38 -32.673 485.65 1.802 -58.877
41 136.99 -3.063 493.93 10.082 -30.881
74 145.29 5.237 485.00 1.152 6.033
90 142.58 2.527 437.22 -46.628 -117.829
93 125.51 -14.543 444.78 -39.068 568.166
95 107.29 -32.763 501.72 17.872 -585.540
97 141.28 1.227 435.78 -48.068 -58.979

1400.53 4838.48 5145.125
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Step 1

Define the population(s) and re-state the research question
as null and alternative hypotheses.

Stress levels are positively related to, and significantly
predict, Achievement levels among UNT students.
Population 1: UNT students’ Stress levels (X).
Population 2: UNT students’ Achievement levels (Y).
Hypothesis 1: The shared variance between X and Y will
be significantly greater than zero.

H0 : r2
XY = 0 H1 : r2

XY > 0
Hypothesis 2: The regression coefficient (b) will be
significantly greater than zero.

H0 : b = 0 H1 : b > 0
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A note about the hypotheses

On the previous slide, Hypothesis 1 was formally stated
using r2

XY ; we could have used rXY to state a hypothesis
about the relationship.

Here I used r2
XY where some authors / texts use rho (ρ) as

a symbol for a population relationship.
I use the r and/or r2 to avoid confusion with Spearman’s ρ
which is used for correlations between ranked variables.
Also notice Hypothesis 1 and Hypothesis 2 are essentially
the same because, we only have one predictor in this
regression example.

Both are stated here as a primer for multiple regression
where each predictor will have a b and the total variance in
the outcome explained by the combination of predictors is
the multiple correlation coefficient squared (R2).
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Step 2

Determine the characteristics of the comparison
distribution(s).

For Hypothesis 1, the comparison distribution is the F
distribution with:

Degrees of Freedom Predicted as the numerator: dfŶ = 1
Degrees of Freedom Error as the denominator:
dfe = n − 2 = 8

For Hypothesis 2, the comparison distribution is the t
distribution with:

Degrees of Freedom: df = n − 2 = 8
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Degrees of Freedom: df = n − 2 = 8
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Step 3

Determine the cutoff score (Critical value) on the
comparison distribution at which the H0 should be rejected
(using the usual 0.05 significance level here).

For Hypothesis 1 with dfŶ = 1 and dfe = n − 2 = 8 we get:
Fcrit = 5.32

http://faculty.vassar.edu/lowry/apx_d.html

For Hypothesis 2 (1-tailed) with df = n − 2 = 8 we get:
tcrit = 1.860

http://www.math.unb.ca/˜knight/utility/t-table.htm
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Step 4

Determine the sample’s score on the comparison
distribution (i.e. calculate your statistics).

Taking what was listed in the Data subsection (above):

COVXY =
∑
(X−X)(Y−Y)

n−1 = 5145.125
9 = 571.6806

rXY = COVXY
SX SY

= 571.6806
(27.866)(39.878) = 0.51445

radj =

√
1− (1−r2)(n−1)

n−2 =

√
1− (1−.514452)(10−1)

10−2 = 0.4156221

r2 = 0.26466

r2
adj = .1727417
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Our Regression Model

Ŷ = a + bX

Now that we have our r and r2 we can construct the model
by calculating the model parameters, so we can then move
toward the ANOVA to test r2 against zero.

b = COVXY
S2

X
= 571.6806

774.514 = 0.7362

a = Y − (b)X = 483.848− (.7362)140.053 = 380.741

Which gives us the following model:

Ŷ = 380.741 + 0.7362X
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Regression (ANOVA) Summary Table

Recall the Regression (ANOVA) Summary Table and notice we
needed the model (parameters) to get the Ŷ values, which are
needed to calculate two SOS

Source SOS df MS Fcalc

Predicted SOSŶ =
∑(

Ŷ − Y
)2

1 SOSŶ
dfŶ

MSŶ
MSe

Error SOSe =
∑(

Y − Ŷ
)2

n − 2 SOSe
dfe

Total SOSY =
∑(

Y − Y
)2

n − 1
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Calculating Predicted Sums of Squares (SOSŶ )

Ŷ Y Ŷ − Y
(

Ŷ − Y
)2

492.2975 483.848 8.449 71.393
480.8421 483.848 -3.006 9.036
532.9214 483.848 49.073 2408.199
459.7939 483.848 -24.054 578.601
481.5930 483.848 -2.255 5.085
487.7035 483.848 3.856 14.865
485.7084 483.848 1.860 3.461
473.1413 483.848 -10.707 114.633
459.7276 483.848 -24.120 581.793
484.7513 483.848 0.903 0.816

↓

SOSŶ =
∑(

Ŷ − Y
)2

= 3787.881
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Calculating Error Sums of Squares (SOSe)

Y Ŷ Y − Ŷ
(

Y − Ŷ
)2

475.92 492.2975 -16.377 268.221
510.29 480.8421 29.448 867.181
568.19 532.9214 35.269 1243.874
485.65 459.7939 25.856 668.539
493.93 481.5930 12.337 152.202
485.00 487.7035 -2.704 7.309
437.22 485.7084 -48.488 2351.125
444.78 473.1413 -28.361 804.365
501.72 459.7276 41.992 1763.360
435.78 484.7513 -48.971 2398.191

↓

SOSe =
∑(

Y − Ŷ
)2

= 10524.37
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Calculating Total Sums of Squares (SOSY )

Y Y Y − Y
(

Y − Y
)2

475.92 483.848 -7.928 62.853
510.29 483.848 26.442 699.179
568.19 483.848 84.342 7113.573
485.65 483.848 1.802 3.247
493.93 483.848 10.082 101.647
485.00 483.848 1.152 1.327
437.22 483.848 -46.628 2174.170
444.78 483.848 -39.068 1526.309
501.72 483.848 17.872 319.408
435.78 483.848 -48.068 2310.533

↓

SOSY =
∑(

Y − Y
)2

= 14214.25
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Regression (ANOVA) Summary Table

Finally, we can construct the Summary Table with the
correct values.

Source SOS df MS Fcalc
Predicted 3787.881 1 3787.881 2.879

Error 10524.370 8 1315.546

Total 14312.250 9
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Step 5: Hypothesis 1

Recall, Hypothesis 1 was: The shared variance between X
and Y will be significantly greater than zero.

H0 : r2
XY = 0 H1 : r2

XY > 0
But, since Fcalc = 2.879 < 5.320 = Fcrit we fail to reject the
null hypothesis and conclude that our sample does not
support the notion that a significant amount of variance in
Achievement (Y) is accounted for by Stress (X) levels.

However, many would argue r2 = .2647 and r2
adj = .1727

are meaningful.
But, consider this; 1− .1727 = .8273 represents the
amount of variance in the outcome (Y) which was not
accounted for by the predictor (X) (e.g., 82.73% of the
variance of Y was not accounted for by X).
It really depends upon the context of the particular study
(i.e. previous research findings with these variables).
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Testing the Significance of b

Traditionally, if the Model is not significant (i.e. Regression
ANOVA is not significant), then you would not test
individual coefficients (i.e. testing b). However, for the sake
of providing an example; we will continue.

Before we march on with the calculations, consider this:
b = 0.7362 which is interpreted as; for every one unit
change in X, there should be a 0.7362 unit change in Y.
Remember, Y = 483.848.....so clearly, X does not
influence Y much at all.
So, you can see the significance test of b is really
unnecessary when r2 is not significantly different from zero.
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Calculating the t test for b

Recall, in order to complete the t test, we need SY .X

SY .X =

√∑(
Y−Ŷ

)2

n−2

Luckily, we already have most of it in the form of

MSe =
∑(

Y − Ŷ
)2
/n − 2 = 1315.546

SY .X =
√

1315.546 = 36.27
Then, we calculate the standard error of b: Sb

Sb = SY .X
SX∗
√

n−1
= 36.27

27.866∗
√

10−1
= 0.4339

Then, we can calculate the t (keep in mind, the population
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)2
/n − 2 = 1315.546

SY .X =
√

1315.546 = 36.27
Then, we calculate the standard error of b: Sb

Sb = SY .X
SX∗
√

n−1
= 36.27

27.866∗
√

10−1
= 0.4339

Then, we can calculate the t (keep in mind, the population
value of b is unknown, we can use the symbol b∗ for it):

t = b−b∗
Sb

= 0.7362−0
0.4339 = 1.6967

Starkweather Module 10.1



Correlation Review Regression NHST 10.1 Summary Data Steps CI Scatter Plots

Calculating the t test for b

Recall, in order to complete the t test, we need SY .X

SY .X =

√∑(
Y−Ŷ
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)2

n−2

Luckily, we already have most of it in the form of

MSe =
∑(

Y − Ŷ
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)2

n−2

Luckily, we already have most of it in the form of

MSe =
∑(

Y − Ŷ
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Step 5: Hypothesis 2

Compare and make a decision.

No surprises here; since tcalc = 1.6967 < 1.860 = tcrit we
fail to reject the null hypothesis and conclude that our
sample does not provide evidence to support the idea that
Stress levels (X) are a significant predictor of Achievement
(Y).
Of course, we can still calculate a confidence interval for b
which will include zero – indicating a lack of statistical
significance.
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Calculating a CI for b

Since we used a significance level of .05 for the critical
value, this will be a 95% confidence interval (CI95).

Recall the general formulas for the Lower Limit (LL) and
Upper Limit (UL):

LL = −crit ∗ SE + mean
UL = +crit ∗ SE + mean

Which become the following for the current situation:
LL = −tcrit ∗ Sb + b
UL = +tcrit ∗ Sb + b

which then become...
LL = −1.860 ∗ .4339 + .7362 = −0.0708
UL = +1.860 ∗ .4339 + .7362 = 1.5432
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CI95

So, our LL = -0.0708 and our UL = 1.5432; which means
our interval includes zero.

Like the NHST we can conclude that our b is not
significantly different from zero.

We interpret this CI as; if we drew an infinite number of
samples of UNT students and measured their Achievement
and Stress levels, 95% of the regression coefficients (b)
would be between -0.708 and 1.5432.
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Scatter Plots

Typically when dealing with relationships, scatter plots are used
to graphically display the data.

Standard practice is to have the predictor on the x-axis and
outcome on the y-axis.
Most sources advocate the scale of each axis begin with zero,
however often that would create a large gap between the origin
(where X and Y intersect) and the majority of points.

For this reason, most scatter plots do not have an origin of
zero.
Or, if a gap exists between zero and the location of the first
data point; then the axis with the gap instead has a jagged
segment between the origin and the first data point.
The jagged segment indicates distance along the axis
between zero and the first tick mark or number of the
scale (of that axis).
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The first scatter plot

Several scatter plots are shown on the following slides.

The first scatter plot is the most basic and simply shows
the sample data (n = 10) with our predictor (X) on the
x-axis and our outcome (Y) on the y-axis.
Notice with only 10 scores, it is difficult to see a
relationship among the data.

However, given what appears to be an outlier (extreme
score) in the upper right of the scatter plot, we could
imagine a line from the lower left to the upper right.

This line would represent a positive correlation (high scores
on X tend to have high scores on Y and low scores on X
tend to have low scores on Y).
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Basic Scatter Plot
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Additions to a Basic Scatter Plot

The previous scatter plot was produced with SPSS; the
following scatter plot was produced with R.

The following scatter plot contains the same information as
the previous plot, but it includes two additional features.

Faint grid lines offer us a better idea of what the slope of a
regression line is: rise over run in decimal form.
Boxplots for each axis allow us to see how the data is
distributed along each individual axis.
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Grid lines and Boxplots

Faint Grid lines

Again, imagine a line from the lower left to the upper right
when looking at the plot.
Rise would be the vertical distance from the line and Run
would be the horizontal distance back to the line.
Positive slope = positive correlation; negative slope =
negative correlation.

Boxplots
Outliers are shown for each boxplot if they are present; on
the following plot there is one outlier on the x-axis.
Notice the bulk of the data (minus the one outlier) is more
tightly pack together for the x-axis than the y-axis.
There is more variance among the data on the y-axis than
on the x-axis; that is why the extreme point is
considered an outlier on X but not on Y.
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Scatter Plot w/grid lines and box plots on each axis

Notice the outlier; also
shown at the bottom
for the x-axis boxplot.
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The Regression Line

Ŷ = 380.741 + .7362X

The next scatter plot (created with SPSS) shows the
regression line for our sample data (n = 10).
Notice the y-intercept (a = 380.741) does not appear
correct because, the scale of each axis does not originate
with zero; if they did, the regression line would intersect the
y-axis at 380.741.
Looking at the following scatter plot, we can also see the
slope (b = .7362) is fairly steep.

Slope = rise over run in decimal form.

Recall, the best fit regression line represents the points
which would be predicted (Ŷ ) by our model for Y, given
new values of X.
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which would be predicted (Ŷ ) by our model for Y, given
new values of X.

Starkweather Module 10.1



Correlation Review Regression NHST 10.1 Summary Data Steps CI Scatter Plots

Scatter Plot w/regression line of best fit

Ŷ = 380.741 + .7362X

Starkweather Module 10.1



Correlation Review Regression NHST 10.1 Summary Data Steps CI Scatter Plots

Population Scatter Plot w/Ellipse

The last scatter plot (produced in R) shows the population
(n = 100) from which our sample data (n = 10) was
randomly drawn.

An ellipse is used to highlight or capture the bulk of the
data.

If the ellipse is more narrow, a stronger correlation exists
among the variables.
If the ellipse is really a circle, a weak (or no) relationship
exists among the variables.

Notice, with the entire population of data (n = 100) it is
easier to see the relationship.
Population results: r = .547, r2

adj = .293.
Complete results from SPSS are below, then the scatter
plot follows.
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Population Regression SPSS Output

Notice, in
Bi-variate
regression;
correlation equals
beta (r = β)

Also, in SPSS: R
is used for r and B
is used for b
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Population (n = 100) Scatter Plot

Ŷ = 366.458 + .779X

Notice the ellipses
enclose the bulk (60%
and 90%) of the data.

Also, the solid dot is
the centroid ; which is
the point at (X , Y )

Also, 2 outliers on Y
(y-axis boxplot).
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Population (n = 100) Scatter Plot

Ŷ = 366.458 + .779X

A new participant has
a Stress level (X) of
100; what do you
predict he or she will
score on
Achievement?
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Population (n = 100) Scatter Plot

Ŷ = 366.458 + .779X

A new participant has
a Stress level (X) of
100; what do you
predict he or she will
score on
Achievement?

Ŷ = 444.358

444.358 =
366.458 + .779(100)
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POP QUIZ!

Based on what we covered here and in previous modules...

The Wechsler Adult Intelligence Scale (WAIS) is called a
standardized measure of Intelligence.

WAIS scores can be described as normally distributed in
the population of the U.S. with: µ = 100, σ = 15

We have (let’s just say) established that WAIS scores are
perfectly correlated with “highest adult level of education”
(HALE).

HALE can be described as normally distributed in the
population of the U.S. with: µ = 50, σ = 10
WAIS and HALE: r = 1.00

QUESTION: If U.S. citizen John Doe scores a 130 on the
WAIS, what would be a good guess for his HALE?
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Thinking?

Think about it for a few minutes.

Think about what a scatter plot would look like, just given
the information from the previous slide.

Think about Centroids.

Think about why there is no y-intercept (a) in a
standardized regression equation.

Think about it some more ;)
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ANSWER

Recall, in bi-variate regression; r = β and beta is the
standardized regression coefficient, or standardized slope
(i.e. rise over run when the variables are standardized).

The generic standardized regression equation is:
ZY = β ∗ ZX

So, if both WAIS and HALE are transformed into
standardized scores, then they both would have a mean of
zero and a standard deviation of 1.00.
Then, since the correlation is a perfect 1.00, we can
conclude that a standardized score of 2 on WAIS (x-axis)
corresponds to a standardized score of 2 on HALE
(y-axis).

John Doe would likely have a 70 on the HALE.
Scatter Plots follow.
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Standardized Scatter Plot: Centroid is (0, 0)

ZŶ = 1.00ZX

The key is that the
‘tick marks’ (numbers)
are at each standard
deviation and
r = 1.00.
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Unstandardized Scatter Plot

Ŷ = 50 + 10
15X

The key is that the
‘tick marks’ (numbers)
are at each standard
deviation and
r = 1.00.

John Doe: X = 130,
Ŷ = 70
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Summary of Module 10.1

Module 10.1 covered the following topics:

Brief review of Correlation.
Introduction to simple (bi-variate) Regression

Concepts, Calculation, Interpretation, Assumptions and
Additional Considerations

NHST Example
Calculating r , r2, radj , r2

adj , b, a
Significance testing of the relationship using r2

Using r2
adj as an unbiased estimate of variance accounted

for effect size.
Significance testing of the regression coefficient (b)
Confidence interval for b (CI95)
Scatter Plots
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adj as an unbiased estimate of variance accounted

for effect size.
Significance testing of the regression coefficient (b)
Confidence interval for b (CI95)
Scatter Plots
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This concludes Module 10.1

A firm understanding of the topics covered here and previously
will be necessary for understanding future topics.

Next time Module 11.
Next time we’ll be covering Categorical data analysis
techniques.
Until next time; have a nice day.

These slides initially created on: October 22, 2010
These slides last updated on: October 28, 2010

The bottom date shown is the date this Adobe.pdf file was
created; LATEX1 has a command for automatically inserting
the date of a document’s creation.

1This document was created in LATEX using the Beamer package
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