Module 11: Nominal and Ordinal Variable Analysis

Jon Starkweather, PhD jonathan.starkweather@unt.edu Consultant Research and Statistical Support

UNIVERSITY OF NORTH TEXAS Discover the power of ideas.

Introduction to Statistics for the Social Sciences

Starkweather Module 11

The RSS short courses

The Research and Statistical Support (RSS) office at the University of North Texas hosts a number of "Short Courses". A list of them is available at:

http://www.unt.edu/rss/Instructional.htm

Chi-square test

- One-way Classification Tables
- Multi-way Contingency Tables
- Effect Size
- Kappa

Chi-square test

- One-way Classification Tables
- Multi-way Contingency Tables
- Effect Size
- Kappa
- 2 Wilcoxon's Ranks tests
 - Wilcoxon's Rank-Sum Test
 - Wilcoxon's Matched-Pairs Signed-Ranks Test

< ロ > < 同 > < 三 >

Chi-square test

- One-way Classification Tables
- Multi-way Contingency Tables
- Effect Size
- Kappa
- 2 Wilcoxon's Ranks tests
 - Wilcoxon's Rank-Sum Test
 - Wilcoxon's Matched-Pairs Signed-Ranks Test
- 8 Kruskal-Wallis One-way ANOVA

< ロ > < 同 > < 三 >

Chi-square test

- One-way Classification Tables
- Multi-way Contingency Tables
- Effect Size
- Kappa
- 2 Wilcoxon's Ranks tests
 - Wilcoxon's Rank-Sum Test
 - Wilcoxon's Matched-Pairs Signed-Ranks Test
- 8 Kruskal-Wallis One-way ANOVA
- 4 Summary of Module 11

• All of the previous modules dealt with *Parametric* statistics.

- All of the previous modules dealt with *Parametric* statistics.
 - Concerned with population values (i.e. parameters).

- All of the previous modules dealt with *Parametric* statistics.
 - Concerned with population values (i.e. parameters).
 - Require Interval and/or ratio scaled variables.

< □ > < □ > < □ > < □ >

- All of the previous modules dealt with *Parametric* statistics.
 - Concerned with population values (i.e. parameters).
 - Require Interval and/or ratio scaled variables.
 - Assumptions about population distributions.

- All of the previous modules dealt with *Parametric* statistics.
 - Concerned with population values (i.e. parameters).
 - Require Interval and/or ratio scaled variables.
 - Assumptions about population distributions.
- This module (11) concerns itself with *Nonparametric* statistics.

(日)

 Most Nonparametrics are still concerned with populations, but the hypotheses are not formally stated using population values.

- Most Nonparametrics are still concerned with populations, but the hypotheses are not formally stated using population values.
 - Nominal or ordinal scaled variables.

(日)

- Most Nonparametrics are still concerned with populations, but the hypotheses are not formally stated using population values.
 - Nominal or ordinal scaled variables.
 - Few if any assumptions.

(日)

- Most Nonparametrics are still concerned with populations, but the hypotheses are not formally stated using population values.
 - Nominal or ordinal scaled variables.
 - Few if any assumptions.
 - Sometimes called distribution-free tests because, they do not make assumptions about a population distribution.

< ロ > < 同 > < 三 >

- Most Nonparametrics are still concerned with populations, but the hypotheses are not formally stated using population values.
 - Nominal or ordinal scaled variables.
 - Few if any assumptions.
 - Sometimes called distribution-free tests because, they do not make assumptions about a population distribution.
- Unfortunately, nonparametric tests tend to have less power or sensitivity to detect significance than their parametric partners.

(日)

• The chi-square test has two forms.

• The chi-square test has two forms.

• Chi-square **Goodness-of-Fit** which tests whether or not the sample data fit the hypothesized population proportions.

ヘロト ヘヨト ヘヨト

• The chi-square test has two forms.

- Chi-square **Goodness-of-Fit** which tests whether or not the sample data fit the hypothesized population proportions.
- Chi-square Test of Independence which tests for the presence or absence of a relationship between two variables.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• The chi-square test has two forms.

- Chi-square **Goodness-of-Fit** which tests whether or not the sample data fit the hypothesized population proportions.
- Chi-square Test of Independence which tests for the presence or absence of a relationship between two variables.
- Both Chi-square tests use the same formula and are based on the distribution of Chi-square.

< □ > < 同 > < 三

• The chi-square test has two forms.

- Chi-square **Goodness-of-Fit** which tests whether or not the sample data fit the hypothesized population proportions.
- Chi-square Test of Independence which tests for the presence or absence of a relationship between two variables.
- Both Chi-square tests use the same formula and are based on the distribution of Chi-square.
 - Symbol: χ^2

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• The χ^2 distribution is not normal (i.e. normally distributed); it is positively skewed.

• The χ^2 distribution is not normal (i.e. normally distributed); it is positively skewed.

ヘロト ヘヨト ヘヨト

• The χ^2 distribution is not normal (i.e. normally distributed); it is positively skewed.

• Notice in the table linked above, the sixth column corresponds to a significance level of 0.05 where:

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• The χ^2 distribution is not normal (i.e. normally distributed); it is positively skewed.

- Notice in the table linked above, the sixth column corresponds to a significance level of 0.05 where:
 - The first column is degrees of freedom (df)

< □ > < □ > < □ >

• The core idea of any chi-square test is the comparison of **Observed** versus **Expected** frequencies.

- The core idea of any chi-square test is the comparison of Observed versus Expected frequencies.
- The general formula is:

- The core idea of any chi-square test is the comparison of Observed versus Expected frequencies.
- The general formula is:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- The core idea of any chi-square test is the comparison of Observed versus Expected frequencies.
- The general formula is:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

• Where O is the observed frequency, E is the expected frequency.

- The core idea of any chi-square test is the comparison of Observed versus Expected frequencies.
- The general formula is:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- Where O is the observed frequency, E is the expected frequency.
 - E is the frequency expected if the null hypothesis were true.

RSS Research and Statistical Support

(日)

One-way Classification Table Example

• The One-way Chi-square test is the Goodness-of-fit test.

ヘロト ヘヨト ヘヨト

Chi-square Wilcoxon Kruskal-Wallis Summary One-way Two-way Effect Size kappa

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.

Chi-square Wilcoxon Kruskal-Wallis Summary One-way Two-way Effect Size kappa

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.
- We would expect, because they were picked at random, that an equal number of those students would be Freshman, Sophomore, Junior, and Senior levels.

Chi-square Wilcoxon Kruskal-Wallis Summary One-way Two-way Effect Size kappa

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.
- We would expect, because they were picked at random, that an equal number of those students would be Freshman, Sophomore, Junior, and Senior levels.
 - We would expect 25 Freshmen, 25 Sophomores, 25 Juniors, and 25 Seniors.

< ロ > < 同 > < 三 >

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.
- We would expect, because they were picked at random, that an equal number of those students would be Freshman, Sophomore, Junior, and Senior levels.
 - We would expect 25 Freshmen, 25 Sophomores, 25 Juniors, and 25 Seniors.
 - The null hypothesis would be: $H_0: E = O$

< ロ > < 同 > < 三 >

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.
- We would expect, because they were picked at random, that an equal number of those students would be Freshman, Sophomore, Junior, and Senior levels.
 - We would expect 25 Freshmen, 25 Sophomores, 25 Juniors, and 25 Seniors.
 - The null hypothesis would be: $H_0: E = O$
 - The alternative hypothesis: $H_1 : E \neq O$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.
- We would expect, because they were picked at random, that an equal number of those students would be Freshman, Sophomore, Junior, and Senior levels.
 - We would expect 25 Freshmen, 25 Sophomores, 25 Juniors, and 25 Seniors.
 - The null hypothesis would be: $H_0: E = O$
 - The alternative hypothesis: $H_1 : E \neq O$
- Instead, we found: 32 Freshmen, 28 Sophomores, 23 Juniors, and 17 Seniors.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

One-way Classification Table Example

- The One-way Chi-square test is the Goodness-of-fit test.
- Say we randomly picked 100 students walking into the University Administration building.
- We would expect, because they were picked at random, that an equal number of those students would be Freshman, Sophomore, Junior, and Senior levels.
 - We would expect 25 Freshmen, 25 Sophomores, 25 Juniors, and 25 Seniors.
 - The null hypothesis would be: $H_0: E = O$
 - The alternative hypothesis: $H_1 : E \neq O$
- Instead, we found: 32 Freshmen, 28 Sophomores, 23 Juniors, and 17 Seniors.
- This study design constitutes a one-way classification table because, there is only one variable (class level) with RSS multiple categories.

The One-way Classification Table

	Freshmen	Sophomore	Junior	Senior
Observed	32	28	23	17
Expected	25	25	25	25

The One-way Classification Table

	Freshmen	Sophomore	Junior	Senior
Observed	32	28	23	17
Expected	25	25	25	25

• Degrees of Freedom (*df*) is the number of Categories or Columns minus 1.

The One-way Classification Table

	Freshmen	Sophomore	Junior	Senior
Observed	32	28	23	17
Expected	25	25	25	25

- Degrees of Freedom (*df*) is the number of Categories or Columns minus 1.
- df = C 1 = 4 1 = 3

http://www.medcalc.be/manual/chi-square-table.php

ヘロト ヘアト ヘヨト ヘ

Calculate Chi-square

• Using the formula from above,

Calculate Chi-square

• Using the formula from above,

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Calculate Chi-square

• Using the formula from above,

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = \frac{(32-25)^2}{25} + \frac{(28-25)^2}{25} + \frac{(23-25)^2}{25} + \frac{(17-25)^2}{25} = 5.04$$

・ロト ・ 同ト ・ ヨト

Calculate Chi-square

• Using the formula from above,

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = \frac{(32-25)^2}{25} + \frac{(28-25)^2}{25} + \frac{(23-25)^2}{25} + \frac{(17-25)^2}{25} = 5.04$$

• And since $\chi^2_{calc} = 5.04 < 7.815 = \chi^2_{crit}$ we fail to reject the null hypothesis and conclude that this sample does not indicate a significant difference between the observed and expected frequencies of class level.

Multi-way Chi-square

• When we have more than one categorical variable, we call the chi-square test a test of *Independence*.

Multi-way Chi-square

- When we have more than one categorical variable, we call the chi-square test a test of *Independence*.
 - Are the cells of the table *Independent* of one another, or is there some relationship occurring among them.

< ロ > < 同 > < 三 >

Multi-way Chi-square

- When we have more than one categorical variable, we call the chi-square test a test of *Independence*.
 - Are the cells of the table *Independent* of one another, or is there some relationship occurring among them.
- In the one-way example above, we called the table a *classification table* because we were classifying frequencies on one variable.

< ロ > < 同 > < 三 >

Multi-way Chi-square

- When we have more than one categorical variable, we call the chi-square test a test of *Independence*.
 - Are the cells of the table *Independent* of one another, or is there some relationship occurring among them.
- In the one-way example above, we called the table a *classification table* because we were classifying frequencies on one variable.
- In the multi-way situation, we call the table a *contingency table* because, the frequencies of one variable are contingent upon another (or more than one) variable.

A Two-way Example

• Suppose we wondered about the gender frequency of students entering the UNT Administration building from above?

A Two-way Example

- Suppose we wondered about the gender frequency of students entering the UNT Administration building from above?
- A 2 X 4 design (Gender by Class Level).

A Two-way Example

- Suppose we wondered about the gender frequency of students entering the UNT Administration building from above?
- A 2 X 4 design (Gender by Class Level).

		Class	Level		
Gender	Freshmen	Sophomore	Junior	Senior	Total
Male	32	28	23	17	100
Female	28	29	20	15	92
Total	60	57	43	32	192

• In the one-way design, expected frequencies were simply even proportions; but here, with a more complex design, we must calculate the expected frequencies which are *contingent* upon two variables.

- In the one-way design, expected frequencies were simply even proportions; but here, with a more complex design, we must calculate the expected frequencies which are *contingent* upon two variables.
- The basic equation for calculating the Expected frequencies is:

- In the one-way design, expected frequencies were simply even proportions; but here, with a more complex design, we must calculate the expected frequencies which are *contingent* upon two variables.
- The basic equation for calculating the Expected frequencies is:

$$E_{ij} = \frac{R_i C_j}{n_t}$$

- In the one-way design, expected frequencies were simply even proportions; but here, with a more complex design, we must calculate the expected frequencies which are *contingent* upon two variables.
- The basic equation for calculating the Expected frequencies is:

$$E_{ij} = \frac{R_i C_j}{n_t}$$

• Where *E_{ij}* is a particular cell, *R_i* is the row total, *C_j* is the column total, and *n_t* is the total number of individuals (or cases).

Expected Frequencies for the current example

• For the current example, we have the following Expected frequencies for each cell:

ヘロト ヘヨト ヘヨト

Chi-square Wilcoxon Kruskal-Wallis Summary

One-way Two-way Effect Size kappa

Expected Frequencies for the current example

• For the current example, we have the following Expected frequencies for each cell:

$$E_{11} = \frac{100 \times 60}{192} \quad E_{12} = \frac{100 \times 57}{192} \quad E_{13} = \frac{100 \times 43}{192} \quad E_{14} = \frac{100 \times 32}{192}$$
$$E_{21} = \frac{92 \times 60}{192} \quad E_{22} = \frac{92 \times 57}{192} \quad E_{23} = \frac{92 \times 43}{192} \quad E_{24} = \frac{92 \times 32}{192}$$

Chi-square Wilcoxon Kruskal-Wallis Summary One-way Two-way Effect Size kappa

Expected Frequencies for the current example

• For the current example, we have the following Expected frequencies for each cell:

$$E_{11} = \frac{100 \times 60}{192} \quad E_{12} = \frac{100 \times 57}{192} \quad E_{13} = \frac{100 \times 43}{192} \quad E_{14} = \frac{100 \times 32}{192}$$
$$E_{21} = \frac{92 \times 60}{192} \quad E_{22} = \frac{92 \times 57}{192} \quad E_{23} = \frac{92 \times 43}{192} \quad E_{24} = \frac{92 \times 32}{192}$$

Which leads to:

 $E_{11} = 31.25$ $E_{12} = 29.69$ $E_{13} = 22.40$ $E_{14} = 16.67$

 $E_{21} = 28.75$ $E_{22} = 27.32$ $E_{23} = 20.60$ $E_{24} = 15.33$

イロト イヨト イヨト イ

Table with Expected Frequencies

• Here we have the Expected Frequencies for each cell, listed in parentheses.

		Class	Level		
Gender	Freshmen	Sophomore	Junior	Senior	Total
Male	32(31.25)	28(29.69)	23(22.40)	17(16.67)	100
Female	28(28.75)	29(27.32)	20(20.60)	15(15.33)	92
Total	60	57	43	32	192

 Of course, you can not have 31.25 persons (frequencies), so you could round to the nearest whole number.

Calculating χ^2 for the two-way example

• Recall the formula for $\chi^2 = \sum \frac{(O-E)^2}{E} =$

• Recall, earlier we said df = C - 1

イロト イヨト イヨト イ

- Recall, earlier we said df = C 1
- In the Two-way situation, we have rows and columns.

(日)

- Recall, earlier we said df = C 1
- In the Two-way situation, we have rows and columns.
- So, *df* = (*R* − 1)(*C* − 1)

- Recall, earlier we said df = C 1
- In the Two-way situation, we have rows and columns.
- So, df = (R-1)(C-1)
 - Where R = the number of rows and C = the number of columns.

- Recall, earlier we said df = C 1
- In the Two-way situation, we have rows and columns.
- So, df = (R-1)(C-1)
 - Where R = the number of rows and C = the number of columns.
- For the current example:

- Recall, earlier we said df = C 1
- In the Two-way situation, we have rows and columns.
- So, df = (R-1)(C-1)
 - Where R = the number of rows and C = the number of columns.
- For the current example:

•
$$df = (2-1)(4-1) = 3$$

http://www.medcalc.be/manual/chi-square-table.php

- Recall, earlier we said df = C 1
- In the Two-way situation, we have rows and columns.

• So,
$$df = (R-1)(C-1)$$

- Where R = the number of rows and C = the number of columns.
- For the current example:

•
$$df = (2-1)(4-1) = 3$$

http://www.medcalc.be/manual/chi-square-table.php

• So, our
$$\chi^2_{crit} = 7.815$$
 is the same.

• So our $\chi^2_{calc} = 0.286 < 7.185 = \chi^2_{crit}$ we fail to reject the null hypothesis and we conclude that there was not a relationship between Gender and Class Level.

- So our $\chi^2_{calc} = 0.286 < 7.185 = \chi^2_{crit}$ we fail to reject the null hypothesis and we conclude that there was not a relationship between Gender and Class Level.
- Stated another way, the two variables were not independent of one another.

ヘロト ヘヨト ヘヨト

- So our $\chi^2_{calc} = 0.286 < 7.185 = \chi^2_{crit}$ we fail to reject the null hypothesis and we conclude that there was not a relationship between Gender and Class Level.
- Stated another way, the two variables were not independent of one another.
- Stated still another way, the Observed frequencies for each cell did not differ significantly from the Expected frequencies.

(日)

- So our $\chi^2_{calc} = 0.286 < 7.185 = \chi^2_{crit}$ we fail to reject the null hypothesis and we conclude that there was not a relationship between Gender and Class Level.
- Stated another way, the two variables were not independent of one another.
- Stated still another way, the Observed frequencies for each cell did not differ significantly from the Expected frequencies.
- Like with correlation, chi-square is very sensitive to sample size.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-way Example Results

- So our $\chi^2_{calc} = 0.286 < 7.185 = \chi^2_{crit}$ we fail to reject the null hypothesis and we conclude that there was not a relationship between Gender and Class Level.
- Stated another way, the two variables were not independent of one another.
- Stated still another way, the Observed frequencies for each cell did not differ significantly from the Expected frequencies.
- Like with correlation, chi-square is very sensitive to sample size.
 - If given a large enough sample, any chi-square analysis will be significant.

(日)

• We can calculate the **odds** of cell membership as a measure of effect size which allows us to go beyond the simple hypothesis testing context.

- We can calculate the **odds** of cell membership as a measure of effect size which allows us to go beyond the simple hypothesis testing context.
- In order to calculate the odds for a given cell, we must identify the cell in our question.

- We can calculate the **odds** of cell membership as a measure of effect size which allows us to go beyond the simple hypothesis testing context.
- In order to calculate the odds for a given cell, we must identify the cell in our question.
 - For example, if you are a Male entering the UNT Administration building, what are the odds you are a Freshman?

- We can calculate the **odds** of cell membership as a measure of effect size which allows us to go beyond the simple hypothesis testing context.
- In order to calculate the odds for a given cell, we must identify the cell in our question.
 - For example, if you are a Male entering the UNT Administration building, what are the odds you are a Freshman?
 - To answer that question, simply divide the number of Freshmen by the number of *not Freshmen* for the Male row.

- We can calculate the **odds** of cell membership as a measure of effect size which allows us to go beyond the simple hypothesis testing context.
- In order to calculate the odds for a given cell, we must identify the cell in our question.
 - For example, if you are a Male entering the UNT Administration building, what are the odds you are a Freshman?
 - To answer that question, simply divide the number of Freshmen by the number of *not Freshmen* for the Male row.
 - Odds of a male also being a Freshman: $\frac{32}{68} = 0.4706$ or nearly 50/50 odds.

- We can calculate the **odds** of cell membership as a measure of effect size which allows us to go beyond the simple hypothesis testing context.
- In order to calculate the odds for a given cell, we must identify the cell in our question.
 - For example, if you are a Male entering the UNT Administration building, what are the odds you are a Freshman?
 - To answer that question, simply divide the number of Freshmen by the number of *not Freshmen* for the Male row.

- Odds of a male also being a Freshman: $\frac{32}{68} = 0.4706$ or nearly 50/50 odds.
- Stated another way: there is a 47.06% chance a male entering the building is also a Freshman.

< < >> < </>

Phi as 2 X 2 Contingency Effect Size

• When in the 2 X 2 situation, Phi can be used to measure the association of the two variables.

- When in the 2 X 2 situation, Phi can be used to measure the association of the two variables.
- Symbol: ϕ

- When in the 2 X 2 situation, Phi can be used to measure the association of the two variables.
- Symbol: ϕ
- Calculation:

- When in the 2 X 2 situation, Phi can be used to measure the association of the two variables.
- Symbol: ϕ
- Calculation:

$$\phi = \sqrt{\frac{\chi^2}{n_t}}$$

- When in the 2 X 2 situation, Phi can be used to measure the association of the two variables.
- Symbol: ϕ
- Calculation:

$$\phi = \sqrt{\frac{\chi^2}{n_t}}$$

• The resulting number will be a correlation coefficient and is interpreted as such.

- When in the 2 X 2 situation, Phi can be used to measure the association of the two variables.
- Symbol: ϕ
- Calculation:

$$\phi = \sqrt{\frac{\chi^2}{n_t}}$$

- The resulting number will be a correlation coefficient and is interpreted as such.
- Of course, it is limited to the 2 X 2 situation only.

• Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.

- Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.
- The forumula is:

- Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.
- The forumula is:

$$V = \sqrt{\frac{\chi^2}{n_t(k-1)}}$$

イロト イヨト イヨト イ

- Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.
- The forumula is:

$$V = \sqrt{\frac{\chi^2}{n_t(k-1)}}$$

• Where *k* is the smaller of: number of rows or number of columns.

- Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.
- The forumula is:

$$V = \sqrt{\frac{\chi^2}{n_t(k-1)}}$$

- Where *k* is the smaller of: number of rows or number of columns.
- A note of caution regarding Phi and Cramer's V. Interpreting a correlation among two strictly categorical variables is essentially meaningless.

(日)

- Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.
- The forumula is:

$$V = \sqrt{\frac{\chi^2}{n_t(k-1)}}$$

- Where *k* is the smaller of: number of rows or number of columns.
- A note of caution regarding Phi and Cramer's V. Interpreting a correlation among two strictly categorical variables is essentially meaningless.
 - What does it mean to say that class standing level and gender are (or are not) correlated at .60?

(日)

- Cramer's *V* is used as an analog to Phi but for contingency tables larger than 2 X 2.
- The forumula is:

$$V = \sqrt{\frac{\chi^2}{n_t(k-1)}}$$

- Where *k* is the smaller of: number of rows or number of columns.
- A note of caution regarding Phi and Cramer's V. Interpreting a correlation among two strictly categorical variables is essentially meaningless.
 - What does it mean to say that class standing level and gender are (or are not) correlated at .60?

ヘロト ヘヨト ヘヨト

• NOT MUCH!

• Cohen's kappa is a measure of agreement.

- Cohen's kappa is a measure of agreement.
- Suppose we have two tenured faculty members rate 28 graduate students' teaching effectiveness.

- Cohen's kappa is a measure of agreement.
- Suppose we have two tenured faculty members rate 28 graduate students' teaching effectiveness.
 - Not Effective, Effective, Highly Effective

(日)

- Cohen's kappa is a measure of agreement.
- Suppose we have two tenured faculty members rate 28 graduate students' teaching effectiveness.
 - Not Effective, Effective, Highly Effective
- It would be beneficial to know if both faculty agree on the ratings; or to what extent do they agree or disagree.

- Cohen's kappa is a measure of agreement.
- Suppose we have two tenured faculty members rate 28 graduate students' teaching effectiveness.
 - Not Effective, Effective, Highly Effective
- It would be beneficial to know if both faculty agree on the ratings; or to what extent do they agree or disagree.
- One could simply calculate the percentage of agreement, but that measure does not take into account the random chance of agreement.

- Cohen's kappa is a measure of agreement.
- Suppose we have two tenured faculty members rate 28 graduate students' teaching effectiveness.
 - Not Effective, Effective, Highly Effective
- It would be beneficial to know if both faculty agree on the ratings; or to what extent do they agree or disagree.
- One could simply calculate the percentage of agreement, but that measure does not take into account the random chance of agreement.
- Cohen's kappa corrects this deficiency.

< ロ > < 同 > < 三 >

kappa

Agreement Data

NE = Not Effective, E = Effective, HE = Highly Effective.

		Faculty 1		
Faculty 2	NE	E	HE	Total
NE	4	0	0	4
E	0	5	1	6
HE	0	3	15	18
Total	4	8	16	28

kappa

• Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).

- Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).
 - This means, 24/28 = .8571 or 85.71% agreement.

- Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).
 - This means, 24/28 = .8571 or 85.71% agreement.
- However, consider the following:

- Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).
 - This means, 24/28 = .8571 or 85.71% agreement.
- However, consider the following:
 - The probability of 'Effective' for Faculty 1 is 8/28 = .2857.

- Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).
 - This means, 24/28 = .8571 or 85.71% agreement.
- However, consider the following:
 - The probability of 'Effective' for Faculty 1 is 8/28 = .2857.
 - The probability of 'Effective' for Faculty 2 is 6/28 = .2143.

- Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).
 - This means, 24/28 = .8571 or 85.71% agreement.
- However, consider the following:
 - The probability of 'Effective' for Faculty 1 is 8/28 = .2857.
 - The probability of 'Effective' for Faculty 2 is 6/28 = .2143.
 - So, the probability of both faculty agreeing on 'Effective' for one student is .2857*.2143 = .0612.

- Of the 28 graduate students, 24 were rated the same by both faculty (add along the diagonal).
 - This means, 24/28 = .8571 or 85.71% agreement.
- However, consider the following:
 - The probability of 'Effective' for Faculty 1 is 8/28 = .2857.
 - The probability of 'Effective' for Faculty 2 is 6/28 = .2143.
 - So, the probability of both faculty agreeing on 'Effective' for one student is .2857*.2143 = .0612.
 - Which is not a lot, but across all 28 students, we can expect .0612*28 = 1.71 agreements just by random chance.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Calculate kappa

• Calculating kappa is similar to calculating the usual χ^2 .

kappa

Calculate kappa

- Calculating kappa is similar to calculating the usual χ^2 .
- The equation for kappa (κ) is:

Calculate kappa

- Calculating kappa is similar to calculating the usual χ^2 .
- The equation for kappa (κ) is:

$$\kappa = \frac{\sum f_0 - \sum f_e}{n_t - \sum f_e}$$

Calculate kappa

- Calculating kappa is similar to calculating the usual χ^2 .
- The equation for kappa (κ) is:

$$\kappa = \frac{\sum f_o - \sum f_e}{n_t - \sum f_e}$$

• Where f_o is the observed frequencies on the diagonal and f_e is the expected frequencies on the diagonal.

Calculating the Expected Frequencies

Calculating the Expected Frequencies

$$E_{ij} = \frac{R_i C_j}{n_t}$$

• Use the same formula from earlier to calculate the Expected Frequencies:

 $F_{ii} = \frac{R_i C_j}{C_j}$

• For Not Effective (NE):
$$(4^*4)/28 = .571$$

$$E_{ij} = \frac{R_i C_j}{n_t}$$

- For Not Effective (NE): (4*4)/28 = .571
- For Effective (E): (6*8)/28 = 1.714

$$E_{ij} = \frac{R_i C_j}{n_t}$$

- For Not Effective (NE): (4*4)/28 = .571
- For Effective (E): (6*8)/28 = 1.714
- For Highly Effective (HE): (18*16)/28 = 10.286

$$E_{ij} = \frac{R_i C_j}{n_t}$$

- For Not Effective (NE): (4*4)/28 = .571
- For Effective (E): (6*8)/28 = 1.714
- For Highly Effective (HE): (18*16)/28 = 10.286
- Then, sum them to get $f_e = 12.571$

Calculating the Observed Frequencies

• Simply add up the observed frequencies to get fo

Calculating the Observed Frequencies

- Simply add up the observed frequencies to get f_o 4+5+15=24
- Now we can calculate kappa.

<ロト <回ト < 回ト

Recall, kappa (κ) is:

• Recall, kappa (κ) is:

$$\kappa = \frac{\sum f_0 - \sum f_e}{n_t - \sum f_e}$$

Recall, kappa (κ) is:

$$\kappa = \frac{\sum f_o - \sum f_e}{n_t - \sum f_e}$$

• So, for the current example:

Recall, kappa (κ) is:

$$\kappa = \frac{\sum f_0 - \sum f_e}{n_t - \sum f_e}$$

• So, for the current example:

$$\kappa = \frac{\sum f_o - \sum f_e}{n_t - \sum f_e} = \frac{24 - 12.571}{28 - 12.571} = .7407$$

Recall, kappa (κ) is:

$$\kappa = \frac{\sum f_o - \sum f_e}{n_t - \sum f_e}$$

• So, for the current example:

$$\kappa = \frac{\sum f_o - \sum f_e}{n_t - \sum f_e} = \frac{24 - 12.571}{28 - 12.571} = .7407$$

• So, agreement is really lower than the 85.71% from above; after accounting for chance it is 74.07%.

(日)

 Wilcoxon's Rank-Sum test is a non-parametric replacement for the Independent Samples t test.

- Wilcoxon's Rank-Sum test is a non-parametric replacement for the Independent Samples *t* test.
- When data do not conform to the assumptions of the *t* test, Wilcoxon's Rank-Sum test is an appropriate alternative.

- Wilcoxon's Rank-Sum test is a non-parametric replacement for the Independent Samples *t* test.
- When data do not conform to the assumptions of the *t* test, Wilcoxon's Rank-Sum test is an appropriate alternative.
- However, as mentioned previously, non-parametric tests tend to have less power than their parametric companions.

- Wilcoxon's Rank-Sum test is a non-parametric replacement for the Independent Samples *t* test.
- When data do not conform to the assumptions of the *t* test, Wilcoxon's Rank-Sum test is an appropriate alternative.
- However, as mentioned previously, non-parametric tests tend to have less power than their parametric companions.
 - The Rank-Sum test has less power than the Independent Samples *t* test.

(日)

- Wilcoxon's Rank-Sum test is a non-parametric replacement for the Independent Samples *t* test.
- When data do not conform to the assumptions of the *t* test, Wilcoxon's Rank-Sum test is an appropriate alternative.
- However, as mentioned previously, non-parametric tests tend to have less power than their parametric companions.
 - The Rank-Sum test has less power than the Independent Samples *t* test.
- The general idea of the Rank-Sum test is to test whether two samples originated with the same population, similar to the Independent Samples *t* test.

RSS Research and Statistical Support

(日)

< ロ > < 同 > < 三 >

Wilcoxon's Rank-Sum test

- Wilcoxon's Rank-Sum test is a non-parametric replacement for the Independent Samples *t* test.
- When data do not conform to the assumptions of the *t* test, Wilcoxon's Rank-Sum test is an appropriate alternative.
- However, as mentioned previously, non-parametric tests tend to have less power than their parametric companions.
 - The Rank-Sum test has less power than the Independent Samples *t* test.
- The general idea of the Rank-Sum test is to test whether two samples originated with the same population, similar to the Independent Samples *t* test.
 - However, it is not specifically tied to *mean* differences, but rather; differences in central tendency.

• If we rank the scores of two groups from lowest to highest, then sum the groups' ranked scores...

- If we rank the scores of two groups from lowest to highest, then sum the groups' ranked scores...
- We would expect, **if the groups are different**, to find the sum of one group to be smaller than the sum of the other group.

- If we rank the scores of two groups from lowest to highest, then sum the groups' ranked scores...
- We would expect, **if the groups are different**, to find the sum of one group to be smaller than the sum of the other group.
- As a significance test, we take the sum of the ranks for the smaller group and compare it to a tabled value to determine if the groups are significantly different.

- If we rank the scores of two groups from lowest to highest, then sum the groups' ranked scores...
- We would expect, **if the groups are different**, to find the sum of one group to be smaller than the sum of the other group.
- As a significance test, we take the sum of the ranks for the smaller group and compare it to a tabled value to determine if the groups are significantly different.
 - If the groups are equal size, then use the smaller of the two ranked sums.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- If we rank the scores of two groups from lowest to highest, then sum the groups' ranked scores...
- We would expect, **if the groups are different**, to find the sum of one group to be smaller than the sum of the other group.
- As a significance test, we take the sum of the ranks for the smaller group and compare it to a tabled value to determine if the groups are significantly different.
 - If the groups are equal size, then use the smaller of the two ranked sums.

http://www.unt.edu/rss/class/Jon/ISSS_SC/Module011/ws_tables/

• Say we have two groups' Driving Anger scores; a group of police officers and a group of taxi drivers.

- Say we have two groups' Driving Anger scores; a group of police officers and a group of taxi drivers.
- The police officers' scores are: 8, 15, 12, 10, 13

- Say we have two groups' Driving Anger scores; a group of police officers and a group of taxi drivers.
- The police officers' scores are: 8, 15, 12, 10, 13
- The taxi drivers' scores are: 27, 28, 19, 17, 26, 28

- Say we have two groups' Driving Anger scores; a group of police officers and a group of taxi drivers.
- The police officers' scores are: 8, 15, 12, 10, 13
- The taxi drivers' scores are: 27, 28, 19, 17, 26, 28
- We would expect police officers to have a lower level of Driving Anger than the Taxi drivers.

- Say we have two groups' Driving Anger scores; a group of police officers and a group of taxi drivers.
- The police officers' scores are: 8, 15, 12, 10, 13
- The taxi drivers' scores are: 27, 28, 19, 17, 26, 28
- We would expect police officers to have a lower level of Driving Anger than the Taxi drivers.
 - One-tailed test: police officers < taxi drivers.

- Say we have two groups' Driving Anger scores; a group of police officers and a group of taxi drivers.
- The police officers' scores are: 8, 15, 12, 10, 13
- The taxi drivers' scores are: 27, 28, 19, 17, 26, 28
- We would expect police officers to have a lower level of Driving Anger than the Taxi drivers.
 - One-tailed test: police officers < taxi drivers.
- To test this we will first rank all the scores.

Ranked Data

	Raw Scores	Rank
		naiin
Police	8	1
Officers	15	5
	12	3
	10	2
	13	4
Taxi	27	9
Drivers	28	10.5
	19	7
	17	6
	26	8
	28	10.5

Tied scores get tied ranks half-way between the two whole number ranks they would occupy if sequential.

Calculate W_s

• Sum the Ranks for the **smaller** group, the police officers: $\sum R_s = 1 + 5 + 3 + 2 + 4 = 15$

Calculate W_s

- Sum the Ranks for the **smaller** group, the police officers: $\sum R_s = 1 + 5 + 3 + 2 + 4 = 15$
- Look in the table for the critical value of *W_s* with a significance level of 0.05 and:

Calculate W_s

- Sum the Ranks for the **smaller** group, the police officers: $\sum R_s = 1 + 5 + 3 + 2 + 4 = 15$
- Look in the table for the critical value of *W_s* with a significance level of 0.05 and:
 - $n_1 = \text{smaller group} = 5$
 - $n_2 = \text{larger group} = 6$

Calculate W_s

- Sum the Ranks for the **smaller** group, the police officers: $\sum R_s = 1 + 5 + 3 + 2 + 4 = 15$
- Look in the table for the critical value of *W_s* with a significance level of 0.05 and:
 - $n_1 = \text{smaller group} = 5$
 - n₂ = larger group = 6

http://www.unt.edu/rss/class/Jon/ISSS_SC/Module011/ws_tables/

ヘロト ヘアト ヘヨト

ヘロト ヘアト ヘヨト

Calculate W_s

- Sum the Ranks for the **smaller** group, the police officers: $\sum R_s = 1 + 5 + 3 + 2 + 4 = 15$
- Look in the table for the critical value of *W_s* with a significance level of 0.05 and:
 - $n_1 = \text{smaller group} = 5$
 - n₂ = larger group = 6

http://www.unt.edu/rss/class/Jon/ISSS_SC/Module011/ws_tables/

• Since our calculated $W_s = 15 < 20 = W_s$ critical value; we reject the null hypothesis and conclude that the two groups *are* significantly different.

 It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.

- It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.
 - The calculated *W_s* needs to be less than or equal to the critical value in order to reject the null (i.e. find a significant difference).

- It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.
 - The calculated *W_s* needs to be less than or equal to the critical value in order to reject the null (i.e. find a significant difference).
- If we wanted to test if the Upper-Tail was significant (i.e. hypothesize that the taxi drivers tend to score significantly higher than the police officers) we would need to calculate W's

- It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.
 - The calculated W_s needs to be less than or equal to the critical value in order to reject the null (i.e. find a significant difference).
- If we wanted to test if the Upper-Tail was significant (i.e. hypothesize that the taxi drivers tend to score significantly higher than the police officers) we would need to calculate W's

$$W_s' = 2\overline{W} - W_s$$

- It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.
 - The calculated *W_s* needs to be less than or equal to the critical value in order to reject the null (i.e. find a significant difference).
- If we wanted to test if the Upper-Tail was significant (i.e. hypothesize that the taxi drivers tend to score significantly higher than the police officers) we would need to calculate W'_s

$$W_s' = 2\overline{W} - W_s$$

• where $2\overline{W} = n_1(n_1 + n_2 + 1)$

- It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.
 - The calculated *W_s* needs to be less than or equal to the critical value in order to reject the null (i.e. find a significant difference).
- If we wanted to test if the Upper-Tail was significant (i.e. hypothesize that the taxi drivers tend to score significantly higher than the police officers) we would need to calculate W's

$$W_s' = 2\overline{W} - W_s$$

• where $2\overline{W} = n_1 (n_1 + n_2 + 1)$

• Notice, the table provides 2W in the right most column.

- It is important to note that the table of *W_s* displays Critical Lower-Tail Values of *W_s*, where *n*₁ ≤ *n*₂.
 - The calculated *W_s* needs to be less than or equal to the critical value in order to reject the null (i.e. find a significant difference).
- If we wanted to test if the Upper-Tail was significant (i.e. hypothesize that the taxi drivers tend to score significantly higher than the police officers) we would need to calculate W's

$$W_s' = 2\overline{W} - W_s$$

• where $2\overline{W} = n_1 (n_1 + n_2 + 1)$

- Notice, the table provides $2\overline{W}$ in the right most column.
- Then, if W'_s is larger than the critical value, we would reject the null and conclude that the taxi drivers scored significantly higher on the Driving Anger scale.

• Notice the tables of W_s are only useful when n_1 and n_2 are less than or equal to 25.

- Notice the tables of W_s are only useful when n_1 and n_2 are less than or equal to 25.
- For larger samples, the distribution of *W_s* approaches normal; which means we can calculate a *z* score for them.

- Notice the tables of W_s are only useful when n_1 and n_2 are less than or equal to 25.
- For larger samples, the distribution of *W_s* approaches normal; which means we can calculate a *z* score for them.
 - The mean of the distribution of W_s is: $\frac{n_1(n_1+n_2+1)}{2}$

- Notice the tables of W_s are only useful when n_1 and n_2 are less than or equal to 25.
- For larger samples, the distribution of *W_s* approaches normal; which means we can calculate a *z* score for them.
 - The mean of the distribution of W_s is: $\frac{n_1(n_1+n_2+1)}{2}$
 - And the standard deviation of the distribution of W_s is:

$$\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}$$

< ロ > < 同 > < 三 >

Normal Approximation

- Notice the tables of W_s are only useful when n_1 and n_2 are less than or equal to 25.
- For larger samples, the distribution of *W*_s approaches normal; which means we can calculate a *z* score for them.
 - The mean of the distribution of W_s is: $\frac{n_1(n_1+n_2+1)}{2}$
 - And the standard deviation of the distribution of W_s is: $\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}$
- So, the *z* score is calculated using:

$$Z = \frac{\text{statistic} - \text{mean}}{\text{standard deviation}} = \frac{W_s - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}}$$

For the current example

• For our current example: police officers vs. taxi drivers we calculate a *z* score of -2.738.

For the current example

• For our current example: police officers vs. taxi drivers we calculate a *z* score of -2.738.

$$z = \frac{\text{statistic}-\text{mean}}{\text{standard deviation}} = \frac{W_{\text{s}} - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}} = \frac{15 - \frac{5(5 + 6 + 1)}{2}}{\sqrt{\frac{5(6)(5 + 6 + 1)}{12}}} = -2.738$$

For the current example

• For our current example: police officers vs. taxi drivers we calculate a *z* score of -2.738.

$$z = \frac{\text{statistic-mean}}{\text{standard deviation}} = \frac{W_{\text{s}} - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}} = \frac{15 - \frac{5(5 + 6 + 1)}{2}}{\sqrt{\frac{5(6)(5 + 6 + 1)}{12}}} = -2.738$$

 So we could say the police officers scored significantly lower than the taxi drivers because a critical z value of -1.64 corresponds to a one-tailed test of z at 0.05 (negative because we hypothesized the police would be **lower**).

http://www.mathsisfun.com/data/standard-normal-distribution-table.html

Wilcoxon's Matched-Pairs Signed-Ranks test

• The Wilcoxon's Matched-Pairs Signed-Ranks test is an appropriate alternative to the Dependent Samples *t* test.

- The Wilcoxon's Matched-Pairs Signed-Ranks test is an appropriate alternative to the Dependent Samples *t* test.
- It is used when the assumptions for the Dependent Samples *t* test can not be met.

- The Wilcoxon's Matched-Pairs Signed-Ranks test is an appropriate alternative to the Dependent Samples *t* test.
- It is used when the assumptions for the Dependent Samples *t* test can not be met.
- Specifically it is used to determine if a significant difference exists among two related sets of scores.

- The Wilcoxon's Matched-Pairs Signed-Ranks test is an appropriate alternative to the Dependent Samples *t* test.
- It is used when the assumptions for the Dependent Samples *t* test can not be met.
- Specifically it is used to determine if a significant difference exists among two related sets of scores.
 - e.g., pretest to post test.

- The Wilcoxon's Matched-Pairs Signed-Ranks test is an appropriate alternative to the Dependent Samples *t* test.
- It is used when the assumptions for the Dependent Samples *t* test can not be met.
- Specifically it is used to determine if a significant difference exists among two related sets of scores.
 - e.g., pretest to post test.
- Like the previous Wilcoxon test, this one works with ranks and the sum of ranks.

 Suppose were were interested in documenting the effectiveness of Xanax as an anti-anxiety treatment.

- Suppose were were interested in documenting the effectiveness of Xanax as an anti-anxiety treatment.
- We gather 10 individuals who meet the diagnostic criteria for general anxiety and measure their symptoms with a standard anxiety survey.

- Suppose were were interested in documenting the effectiveness of Xanax as an anti-anxiety treatment.
- We gather 10 individuals who meet the diagnostic criteria for general anxiety and measure their symptoms with a standard anxiety survey.
- Then, we administer a protocol of Xanax for two weeks and follow that with another measure of their symptoms on the anxiety survey.

- Suppose were were interested in documenting the effectiveness of Xanax as an anti-anxiety treatment.
- We gather 10 individuals who meet the diagnostic criteria for general anxiety and measure their symptoms with a standard anxiety survey.
- Then, we administer a protocol of Xanax for two weeks and follow that with another measure of their symptoms on the anxiety survey.
- We would expect the post test scores to be lower than the pretest scores.

- Suppose were were interested in documenting the effectiveness of Xanax as an anti-anxiety treatment.
- We gather 10 individuals who meet the diagnostic criteria for general anxiety and measure their symptoms with a standard anxiety survey.
- Then, we administer a protocol of Xanax for two weeks and follow that with another measure of their symptoms on the anxiety survey.
- We would expect the post test scores to be lower than the pretest scores.
 - One-tailed test, lower end

Example Data

Pre	Post	Difference	Rank of difference	Signed Rank
15	8	7	2.5	2.5
18	10	8	4.5	4.5
17	8	9	6.5	6.5
19	11	8	4.5	4.5
20	13	7	2.5	2.5
22	12	10	8.5	8.5
16	18	-2	1	-1
24	12	12	10	10
23	14	9	6.5	6.5
21	11	10	8.5	8.5

 $T + = \sum positive ranks = 54$

 $T - = \sum negative \ ranks = -1$

<ロト <回 > < 注 > < 注 > 、

• Once we have the sum of both positive and negative difference ranks, we compute *T_{calc}* which is simply the smaller of the two in absolute value.

- Once we have the sum of both positive and negative difference ranks, we compute *T_{calc}* which is simply the smaller of the two in absolute value.
 - Since T = -1 is smaller in absolute value than T = 54, then $T_{calc} = 1$ (the absolute value of the smaller rank sum).

- Once we have the sum of both positive and negative difference ranks, we compute *T_{calc}* which is simply the smaller of the two in absolute value.
 - Since T = -1 is smaller in absolute value than T = 54, then $T_{calc} = 1$ (the absolute value of the smaller rank sum).
- To find the critical value (T_{crit}) , we use the number of participants or cases (n = 10) and look in the *T* distribution table, specifically the column with a significance level of 0.05 (the table linked below has only one column: the 0.05 values are listed).

- Once we have the sum of both positive and negative difference ranks, we compute *T_{calc}* which is simply the smaller of the two in absolute value.
 - Since T = -1 is smaller in absolute value than T = 54, then $T_{calc} = 1$ (the absolute value of the smaller rank sum).
- To find the critical value (T_{crit}) , we use the number of participants or cases (n = 10) and look in the *T* distribution table, specifically the column with a significance level of 0.05 (the table linked below has only one column: the 0.05 values are listed).
 - As before, all the values in the table are for one-tailed tests.

- Once we have the sum of both positive and negative difference ranks, we compute T_{calc} which is simply the smaller of the two in absolute value.
 - Since T = -1 is smaller in absolute value than T = 54, then T_{calc} = 1 (the absolute value of the smaller rank sum).
- To find the critical value (T_{crit}) , we use the number of participants or cases (n = 10) and look in the *T* distribution table, specifically the column with a significance level of 0.05 (the table linked below has only one column: the 0.05 values are listed).
 - As before, all the values in the table are for one-tailed tests.

http://comp9.psych.cornell.edu/Darlington/wilcoxon/wilcox5.htm

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

http://comp9.psych.cornell.edu/Darlington/wilcoxon/wilcox51.htm

• So, the T_{crit} (labeled S in the table linked above), for n = 10 would be 10 (with exact significance level at 0.04199) or we could use 11 (with an exact significance level of 0.05273).

T_{calc} versus T_{crit}

http://comp9.psych.cornell.edu/Darlington/wilcoxon/wilcox51.htm

- So, the T_{crit} (labeled S in the table linked above), for n = 10 would be 10 (with exact significance level at 0.04199) or we could use 11 (with an exact significance level of 0.05273).
 - Remember, because we are dealing with ranks, *T*_{crit} must be a discrete number.

T_{calc} versus T_{crit}

http://comp9.psych.cornell.edu/Darlington/wilcoxon/wilcox51.htm

- So, the T_{crit} (labeled S in the table linked above), for n = 10 would be 10 (with exact significance level at 0.04199) or we could use 11 (with an exact significance level of 0.05273).
 - Remember, because we are dealing with ranks, *T*_{crit} must be a discrete number.
- So, since $T_{calc} = 1 < 10 = T_{crit}$ we reject the null hypothesis and conclude that the post-test scores were significantly lower than the pretest scores.

• When sample sizes are greater than 50, we can conduct a *z* test with our ranked sums *T*.

- When sample sizes are greater than 50, we can conduct a *z* test with our ranked sums *T*.
- The distribution of *T* is approximately normal when n > 50 with a mean of: ⁿ⁽ⁿ⁺¹⁾/₄

(日)

- When sample sizes are greater than 50, we can conduct a *z* test with our ranked sums *T*.
- The distribution of *T* is approximately normal when n > 50 with a mean of: ⁿ⁽ⁿ⁺¹⁾/₄
- And a standard deviation of: $\sqrt{\frac{n(n+1)(2n+1)}{24}}$

- When sample sizes are greater than 50, we can conduct a *z* test with our ranked sums *T*.
- The distribution of *T* is approximately normal when n > 50 with a mean of: $\frac{n(n+1)}{4}$
- And a standard deviation of: $\sqrt{\frac{n(n+1)(2n+1)}{24}}$
- All of which gives us what we need to compute z:

- When sample sizes are greater than 50, we can conduct a *z* test with our ranked sums *T*.
- The distribution of *T* is approximately normal when n > 50 with a mean of: $\frac{n(n+1)}{4}$
- And a standard deviation of: $\sqrt{\frac{n(n+1)(2n+1)}{24}}$
- All of which gives us what we need to compute z:

$$Z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$

Current Example applied to *z* test

• Our current example has T = 1 and n = 10 so;

イロト イヨト イヨト イ

Chi-square Wilcoxon Kruskal-Wallis Summary

Rank-Sum Test Matched-Pairs Test

Current Example applied to *z* test

• Our current example has T = 1 and n = 10 so;

$$z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} = \frac{1 - \frac{10(10+1)}{4}}{\sqrt{\frac{10(10+1)(2\times10+1)}{24}}} = -2.701$$

イロト イヨト イヨト イ

Current Example applied to *z* test

• Our current example has T = 1 and n = 10 so;

$$z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} = \frac{1 - \frac{10(10+1)}{4}}{\sqrt{\frac{10(10+1)(2*10+1)}{24}}} = -2.701$$

• Clearly, our *z* calculated value is more extreme than a critical value of -1.64 (one-tailed, 0.05 significance).

Current Example applied to *z* test

• Our current example has T = 1 and n = 10 so;

$$z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} = \frac{1 - \frac{10(10+1)}{4}}{\sqrt{\frac{10(10+1)(2*10+1)}{24}}} = -2.701$$

• Clearly, our *z* calculated value is more extreme than a critical value of -1.64 (one-tailed, 0.05 significance).

http://www.mathsisfun.com/data/standard-normal-distribution-table.html

 The Kruskal-Wallis test is a nonparametric replacement for the One-way ANOVA when the assumptions of One-way ANOVA are not met.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The Kruskal-Wallis test is a nonparametric replacement for the One-way ANOVA when the assumptions of One-way ANOVA are not met.
- The Kruskal-Wallis test is a direct extension of the Wilcoxon's Rank-Sum test for independent groups.

- The Kruskal-Wallis test is a nonparametric replacement for the One-way ANOVA when the assumptions of One-way ANOVA are not met.
- The Kruskal-Wallis test is a direct extension of the Wilcoxon's Rank-Sum test for independent groups.
 - Both are based on the sums of ranks.

- The Kruskal-Wallis test is a nonparametric replacement for the One-way ANOVA when the assumptions of One-way ANOVA are not met.
- The Kruskal-Wallis test is a direct extension of the Wilcoxon's Rank-Sum test for independent groups.
 - Both are based on the sums of ranks.
- As with the Wilcoxon's Rank-Sum test we again rank all of the scores (regardless of group membership) and then sum the ranks for each group.

RSS Research and Statistical Support

Omnibus test of differences

• The Kruskal-Wallis test is used to identify differences in central tendency among more than 2 groups.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Omnibus test of differences

- The Kruskal-Wallis test is used to identify differences in central tendency among more than 2 groups.
- As with the One-way ANOVA, the Kruskal-Wallis test can only tell us if there is a significant difference among the central tendencies of the groups; it does not tell us *where* the group differences are located.

Omnibus test of differences

- The Kruskal-Wallis test is used to identify differences in central tendency among more than 2 groups.
- As with the One-way ANOVA, the Kruskal-Wallis test can only tell us if there is a significant difference among the central tendencies of the groups; it does not tell us *where* the group differences are located.
 - Secondary analysis, such as the Wilcoxon's Rank-Sum test would be necessary (much like conducting post-hoc testing in the ANOVA situation).

• To calculate the Kruskal-Wallis test; compute H

• To calculate the Kruskal-Wallis test; compute H $H = \left[\frac{12}{n_t(n_t+1)}\right] * \sum \frac{R_i^2}{n_i} - 3(n_t+1)$

• To calculate the Kruskal-Wallis test; compute H $H = \begin{bmatrix} 1^2 \\ 1^2 \end{bmatrix} + \sum_{i=1}^{n} \frac{B_i^2}{2} = 2(n+1)$

$$H = \left\lfloor \frac{12}{n_t(n_t+1)} \right\rfloor * \sum \frac{n_t}{n_t} - 3(n_t+1)$$

• where n_t is the total number of participants, R_i is the sum of the ranks in group i, and n_i is the number of participants in group i.

• To calculate the Kruskal-Wallis test; compute *H*

$$H = \left[\frac{12}{n_t(n_t+1)}\right] * \sum \frac{R_i^2}{n_i} - 3(n_t+1)$$

- where *n_t* is the total number of participants, *R_i* is the sum of the ranks in group i, and *n_i* is the number of participants in group i.
- The comparison distribution is the chi-square distribution with df = k 1 where k is the number of groups.

Quick Example

• Suppose we added limousine drivers to our earlier example comparing driving anger among police officers and taxi drivers.

Quick Example

• Suppose we added limousine drivers to our earlier example comparing driving anger among police officers and taxi drivers.

Police		Taxi		Limousine	
Score	Rank	Score	Rank	Score	Rank
8	1	27	13	16	9
15	7.5	28	14.5	15	7.5
12	3	19	11	14	6
10	2	17	10	13	4.5
13	4.5	26	12		
		28	14.5		

Tied scores get tied ranks half-way between the two whole number ranks they would occupy if sequential.

< < >> < <</>

• First, we need the sum of each rank (*R_i*) and the number of participants in each group (*n_i*).

• First, we need the sum of each rank (R_i) and the number of participants in each group (n_i) . $R_1 = 1 + 7.5 + 3 + 2 + 4.5 = 18$ and $n_1 = 5$ $R_2 = 13 + 14.5 + 11 + 10 + 12 + 14.5 = 75$ and $n_2 = 6$ $R_3 = 9 + 7.5 + 6 + 4.5 = 27$ and $n_3 = 4$

- First, we need the sum of each rank (R_i) and the number of participants in each group (n_i) . $R_1 = 1 + 7.5 + 3 + 2 + 4.5 = 18$ and $n_1 = 5$ $R_2 = 13 + 14.5 + 11 + 10 + 12 + 14.5 = 75$ and $n_2 = 6$ $R_3 = 9 + 7.5 + 6 + 4.5 = 27$ and $n_3 = 4$
- Then we can calculate H

• First, we need the sum of each rank (R_i) and the number of participants in each group (n_i) . $R_1 = 1 + 7.5 + 3 + 2 + 4.5 = 18$ and $n_1 = 5$ $R_2 = 13 + 14.5 + 11 + 10 + 12 + 14.5 = 75$ and $n_2 = 6$ $R_3 = 9 + 7.5 + 6 + 4.5 = 27$ and $n_3 = 4$

• Then we can calculate H

$$H = \left[\frac{12}{n_t(n_t+1)}\right] * \sum \frac{R_i^2}{n_i} - 3(n_t+1) = \left[\frac{12}{15(15+1)}\right] * \left[\frac{18^2}{5} + \frac{75^2}{6} + \frac{27^2}{4}\right] - 3(15+1) = 11.2275$$

RSS Research and Statistical Support

• Our H_{calc} (which is really a χ^2 value) is 11.2275.

- Our H_{calc} (which is really a χ^2 value) is 11.2275.
- We have df = k 1 = 3 1 = 2 which with 0.05 significance level, yields a critical value of 5.991.

http://www.medcalc.be/manual/chi-square-table.php

< ロ > < 同 > < 三 >

- Our H_{calc} (which is really a χ^2 value) is 11.2275.
- We have df = k 1 = 3 1 = 2 which with 0.05 significance level, yields a critical value of 5.991.

http://www.medcalc.be/manual/chi-square-table.php

• So, since $H_{calc} = 11.2275 > 5.991 = \chi^2_{crit}$ we reject the null hypothesis and conclude there was a significant difference in driving anger among the three groups.

- Our H_{calc} (which is really a χ^2 value) is 11.2275.
- We have df = k 1 = 3 1 = 2 which with 0.05 significance level, yields a critical value of 5.991.

http://www.medcalc.be/manual/chi-square-table.php

- So, since $H_{calc} = 11.2275 > 5.991 = \chi^2_{crit}$ we reject the null hypothesis and conclude there was a significant difference in driving anger among the three groups.
 - Secondary analysis, such as the Wilcoxon's Rank-Sum test would be necessary to determine where the differences were among each group (much like conducting post-hoc testing in the ANOVA situation).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Chi-square Wilcoxon Kruskal-Wallis Summary

Summary of Module 11

Module 11 covered the following topics:

<ロト < 回 > < 回 > <

Chi-square Wilcoxon Kruskal-Wallis Summary

Summary of Module 11

Module 11 covered the following topics:

Chi-square tests

<ロト < 回 > < 回 > <

Summary of Module 11

Module 11 covered the following topics:

- Chi-square tests
- Wilcoxon's Rank-Sum test

(日)

Summary of Module 11

Module 11 covered the following topics:

- Chi-square tests
- Wilcoxon's Rank-Sum test
- Wilcoson's Matched-Pairs Signed-Ranks test

< 🗇 🕨

Summary of Module 11

Module 11 covered the following topics:

- Chi-square tests
- Wilcoxon's Rank-Sum test
- Wilcoson's Matched-Pairs Signed-Ranks test
- Kruskal-Wallis One-Way ANOVA

This concludes Module 11

• Until next time; have a nice day.

These slides initially created on: October 28, 2010 These slides last updated on: November 2, 2010

• The bottom date shown is the date this Adobe.pdf file was created; LATEX¹ has a command for automatically inserting the date of a document's creation.

¹This document was created in LaTEX using the Beamer package