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The RSS short courses

The Research and Statistical Support (RSS) office at the
University of North Texas hosts a number of “Short Courses”. A
list of them is available at:

http://www.unt.edu/rss/Instructional.htm
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Chi-square Wilcoxon Kruskal-Wallis Summary

Parametric statistics

All of the previous modules dealt with Parametric statistics.

Concerned with population values (i.e. parameters).
Require Interval and/or ratio scaled variables.
Assumptions about population distributions.

This module (11) concerns itself with Nonparametric
statistics.
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Nonparametric statistics

Most Nonparametrics are still concerned with populations,
but the hypotheses are not formally stated using population
values.

Nominal or ordinal scaled variables.
Few if any assumptions.
Sometimes called distribution-free tests because, they do
not make assumptions about a population distribution.

Unfortunately, nonparametric tests tend to have less power
or sensitivity to detect significance than their parametric
partners.
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Chi-square Wilcoxon Kruskal-Wallis Summary One-way Two-way Effect Size kappa

Chi-square test introduction

The chi-square test has two forms.

Chi-square Goodness-of-Fit which tests whether or not the
sample data fit the hypothesized population proportions.
Chi-square Test of Independence which tests for the
presence or absence of a relationship between two
variables.

Both Chi-square tests use the same formula and are based
on the distribution of Chi-square.

Symbol: χ2
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Chi-square distribution

The χ2 distribution is not normal (i.e. normally distributed);
it is positively skewed.

http://www.medcalc.be/manual/
chi-square-table.php

Notice in the table linked above, the sixth column
corresponds to a significance level of 0.05 where:

The first column is degrees of freedom (df )
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Core of Chi-square

The core idea of any chi-square test is the comparison of
Observed versus Expected frequencies.

The general formula is:

χ2 =
∑ (O−E)2

E

Where O is the observed frequency, E is the expected
frequency.

E is the frequency expected if the null hypothesis were true.
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One-way Classification Table Example

The One-way Chi-square test is the Goodness-of-fit test.

Say we randomly picked 100 students walking into the
University Administration building.
We would expect, because they were picked at random,
that an equal number of those students would be
Freshman, Sophomore, Junior, and Senior levels.

We would expect 25 Freshmen, 25 Sophomores, 25
Juniors, and 25 Seniors.
The null hypothesis would be: H0 : E = O
The alternative hypothesis: H1 : E 6= O

Instead, we found: 32 Freshmen, 28 Sophomores, 23
Juniors, and 17 Seniors.
This study design constitutes a one-way classification table
because, there is only one variable (class level) with
multiple categories.
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The One-way Classification Table

Freshmen Sophomore Junior Senior

Observed 32 28 23 17

Expected 25 25 25 25

Degrees of Freedom (df ) is the number of Categories or
Columns minus 1.
df = C − 1 = 4− 1 = 3

http://www.medcalc.be/manual/chi-square-table.php
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Calculate Chi-square

Using the formula from above,

χ2 =
∑ (O−E)2

E

χ2 = (32−25)2

25 + (28−25)2

25 + (23−25)2

25 + (17−25)2

25 = 5.04

And since χ2
calc = 5.04 < 7.815 = χ2

crit we fail to reject the
null hypothesis and conclude that this sample does not
indicate a significant difference between the observed and
expected frequencies of class level.
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Multi-way Chi-square

When we have more than one categorical variable, we call
the chi-square test a test of Independence.

Are the cells of the table Independent of one another, or is
there some relationship occurring among them.

In the one-way example above, we called the table a
classification table because we were classifying
frequencies on one variable.
In the multi-way situation, we call the table a contingency
table because, the frequencies of one variable are
contingent upon another (or more than one) variable.
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A Two-way Example

Suppose we wondered about the gender frequency of
students entering the UNT Administration building from
above?

A 2 X 4 design (Gender by Class Level).

Class Level
Gender Freshmen Sophomore Junior Senior Total
Male 32 28 23 17 100
Female 28 29 20 15 92
Total 60 57 43 32 192
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Expected Frequencies in a Two-way Design

In the one-way design, expected frequencies were simply
even proportions; but here, with a more complex design,
we must calculate the expected frequencies which are
contingent upon two variables.

The basic equation for calculating the Expected
frequencies is:

Eij =
Ri Cj

nt

Where Eij is a particular cell, Ri is the row total, Cj is the
column total, and nt is the total number of individuals (or
cases).
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Expected Frequencies for the current example

For the current example, we have the following Expected
frequencies for each cell:

E11 = 100×60
192 E12 = 100×57

192 E13 = 100×43
192 E14 = 100×32

192

E21 = 92×60
192 E22 = 92×57

192 E23 = 92×43
192 E24 = 92×32

192

Which leads to:

E11 = 31.25 E12 = 29.69 E13 = 22.40 E14 = 16.67

E21 = 28.75 E22 = 27.32 E23 = 20.60 E24 = 15.33
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Table with Expected Frequencies

Here we have the Expected Frequencies for each cell,
listed in parentheses.

Class Level
Gender Freshmen Sophomore Junior Senior Total
Male 32(31.25) 28(29.69) 23(22.40) 17(16.67) 100
Female 28(28.75) 29(27.32) 20(20.60) 15(15.33) 92
Total 60 57 43 32 192

Of course, you can not have 31.25 persons (frequencies),
so you could round to the nearest whole number.
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Calculating χ2 for the two-way example

Recall the formula for χ2 =
∑ (O−E)2

E =

(32−32.25)2

31.25 + (28−29.69)2

29.69 + (23−22.40)2

22.40 + (17−16.67)2

16.67 +

(28−28.75)2

28.75 + (29−27.32)2

27.32 + (20−20.60)2

20.60 + (15−15.33)2

15.33 =

χ2 = 0.286
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Degrees of Freedom in Two-way designs

Recall, earlier we said df = C − 1

In the Two-way situation, we have rows and columns.
So, df = (R − 1) (C − 1)

Where R = the number of rows and C = the number of
columns.

For the current example:
df = (2− 1) (4− 1) = 3

http://www.medcalc.be/manual/chi-square-table.php

So, our χ2
crit = 7.815 is the same.
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Two-way Example Results

So our χ2
calc = 0.286 < 7.185 = χ2

crit we fail to reject the
null hypothesis and we conclude that there was not a
relationship between Gender and Class Level.

Stated another way, the two variables were not
independent of one another.
Stated still another way, the Observed frequencies for each
cell did not differ significantly from the Expected
frequencies.
Like with correlation, chi-square is very sensitive to sample
size.

If given a large enough sample, any chi-square analysis will
be significant.
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Odds as Effect Size

We can calculate the odds of cell membership as a
measure of effect size which allows us to go beyond the
simple hypothesis testing context.

In order to calculate the odds for a given cell, we must
identify the cell in our question.

For example, if you are a Male entering the UNT
Administration building, what are the odds you are a
Freshman?
To answer that question, simply divide the number of
Freshmen by the number of not Freshmen for the Male row.
Odds of a male also being a Freshman: 32

68 = 0.4706 or
nearly 50/50 odds.

Stated another way: there is a 47.06% chance a male
entering the building is also a Freshman.
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Phi as 2 X 2 Contingency Effect Size

When in the 2 X 2 situation, Phi can be used to measure
the association of the two variables.

Symbol: φ
Calculation:

φ =
√

χ2

nt

The resulting number will be a correlation coefficient and is
interpreted as such.
Of course, it is limited to the 2 X 2 situation only.
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Cramer’s V

Cramer’s V is used as an analog to Phi but for contingency
tables larger than 2 X 2.

The forumula is:

V =
√

χ2

nt (k−1)

Where k is the smaller of: number of rows or number of
columns.
A note of caution regarding Phi and Cramer’s V.
Interpreting a correlation among two strictly categorical
variables is essentially meaningless.

What does it mean to say that class standing level and
gender are (or are not) correlated at .60?
NOT MUCH!
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Cohen’s kappa

Cohen’s kappa is a measure of agreement.

Suppose we have two tenured faculty members rate 28
graduate students’ teaching effectiveness.

Not Effective, Effective, Highly Effective

It would be beneficial to know if both faculty agree on the
ratings; or to what extent do they agree or disagree.
One could simply calculate the percentage of agreement,
but that measure does not take into account the random
chance of agreement.
Cohen’s kappa corrects this deficiency.
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Agreement Data

NE = Not Effective, E = Effective, HE = Highly Effective.

Faculty 1
Faculty 2 NE E HE Total
NE 4 0 0 4
E 0 5 1 6
HE 0 3 15 18
Total 4 8 16 28
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Percentage of Agreement and Random Chance

Of the 28 graduate students, 24 were rated the same by
both faculty (add along the diagonal).

This means, 24/28 = .8571 or 85.71% agreement.
However, consider the following:

The probability of ‘Effective’ for Faculty 1 is 8/28 = .2857.
The probability of ‘Effective’ for Faculty 2 is 6/28 = .2143.
So, the probability of both faculty agreeing on ‘Effective’ for
one student is .2857*.2143 = .0612.
Which is not a lot, but across all 28 students, we can expect
.0612*28 = 1.71 agreements just by random chance.
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Calculate kappa

Calculating kappa is similar to calculating the usual χ2.

The equation for kappa (κ) is:

κ =
∑

fo−
∑

fe
nt−

∑
fe

Where fo is the observed frequencies on the diagonal and
fe is the expected frequencies on the diagonal.
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Calculating the Expected Frequencies

Use the same formula from earlier to calculate the
Expected Frequencies:

Eij =
Ri Cj

nt

For Not Effective (NE): (4*4)/28 = .571
For Effective (E): (6*8)/28 = 1.714
For Highly Effective (HE): (18*16)/28 = 10.286
Then, sum them to get fe = 12.571
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Calculating the Observed Frequencies

Simply add up the observed frequencies to get fo

4 + 5 + 15 = 24
Now we can calculate kappa.
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Calculating kappa

Recall, kappa (κ) is:

κ =
∑

fo−
∑

fe
nt−

∑
fe

So, for the current example:

κ =
∑

fo−
∑

fe
nt−

∑
fe = 24−12.571

28−12.571 = .7407

So, agreement is really lower than the 85.71% from above;
after accounting for chance it is 74.07%.
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Wilcoxon’s Rank-Sum test

Wilcoxon’s Rank-Sum test is a non-parametric
replacement for the Independent Samples t test.

When data do not conform to the assumptions of the t test,
Wilcoxon’s Rank-Sum test is an appropriate alternative.
However, as mentioned previously, non-parametric tests
tend to have less power than their parametric companions.

The Rank-Sum test has less power than the Independent
Samples t test.

The general idea of the Rank-Sum test is to test whether
two samples originated with the same population, similar to
the Independent Samples t test.

However, it is not specifically tied to mean differences, but
rather; differences in central tendency.
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Ranked Sums

If we rank the scores of two groups from lowest to highest,
then sum the groups’ ranked scores...

We would expect, if the groups are different, to find the
sum of one group to be smaller than the sum of the other
group.
As a significance test, we take the sum of the ranks for the
smaller group and compare it to a tabled value to
determine if the groups are significantly different.

If the groups are equal size, then use the smaller of the two
ranked sums.

http://www.unt.edu/rss/class/Jon/ISSS_SC/Module011/ws_tables/
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Small Example

Say we have two groups’ Driving Anger scores; a group of
police officers and a group of taxi drivers.

The police officers’ scores are: 8, 15, 12, 10, 13
The taxi drivers’ scores are: 27, 28, 19, 17, 26, 28
We would expect police officers to have a lower level of
Driving Anger than the Taxi drivers.

One-tailed test: police officers < taxi drivers.

To test this we will first rank all the scores.
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Ranked Data

Raw Scores Rank
Police 8 1
Officers 15 5

12 3
10 2
13 4

Taxi 27 9
Drivers 28 10.5

19 7
17 6
26 8
28 10.5

Tied scores get tied ranks half-way between the two whole number
ranks they would occupy if sequential.
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Calculate Ws

Sum the Ranks for the smaller group, the police officers:∑
Rs = 1 + 5 + 3 + 2 + 4 = 15

Look in the table for the critical value of Ws with a
significance level of 0.05 and:

n1 = smaller group = 5
n2 = larger group = 6

http://www.unt.edu/rss/class/Jon/ISSS_SC/Module011/ws_tables/

Since our calculated Ws = 15 < 20 = Ws critical value; we
reject the null hypothesis and conclude that the two groups
are significantly different.
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Caution

It is important to note that the table of Ws displays Critical
Lower-Tail Values of Ws, where n1 ≤ n2.

The calculated Ws needs to be less than or equal to the
critical value in order to reject the null (i.e. find a significant
difference).

If we wanted to test if the Upper-Tail was significant (i.e.
hypothesize that the taxi drivers tend to score significantly
higher than the police officers) we would need to calculate
W ′

s

W ′
s = 2W −Ws

where 2W = n1 (n1 + n2 + 1)
Notice, the table provides 2W in the right most column.

Then, if W ′
s is larger than the critical value, we would reject

the null and conclude that the taxi drivers scored
significantly higher on the Driving Anger scale.
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W ′
s = 2W −Ws

where 2W = n1 (n1 + n2 + 1)
Notice, the table provides 2W in the right most column.

Then, if W ′
s is larger than the critical value, we would reject

the null and conclude that the taxi drivers scored
significantly higher on the Driving Anger scale.
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Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Normal Approximation

Notice the tables of Ws are only useful when n1 and n2 are
less than or equal to 25.

For larger samples, the distribution of Ws approaches
normal; which means we can calculate a z score for them.

The mean of the distribution of Ws is: n1(n1+n2+1)
2

And the standard deviation of the distribution of Ws is:√
n1n2(n1+n2+1)

12

So, the z score is calculated using:

z = statistic−mean
standard deviation =

Ws−
n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Normal Approximation

Notice the tables of Ws are only useful when n1 and n2 are
less than or equal to 25.
For larger samples, the distribution of Ws approaches
normal; which means we can calculate a z score for them.

The mean of the distribution of Ws is: n1(n1+n2+1)
2

And the standard deviation of the distribution of Ws is:√
n1n2(n1+n2+1)

12

So, the z score is calculated using:

z = statistic−mean
standard deviation =

Ws−
n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Normal Approximation

Notice the tables of Ws are only useful when n1 and n2 are
less than or equal to 25.
For larger samples, the distribution of Ws approaches
normal; which means we can calculate a z score for them.

The mean of the distribution of Ws is: n1(n1+n2+1)
2

And the standard deviation of the distribution of Ws is:√
n1n2(n1+n2+1)

12

So, the z score is calculated using:

z = statistic−mean
standard deviation =

Ws−
n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Normal Approximation

Notice the tables of Ws are only useful when n1 and n2 are
less than or equal to 25.
For larger samples, the distribution of Ws approaches
normal; which means we can calculate a z score for them.

The mean of the distribution of Ws is: n1(n1+n2+1)
2

And the standard deviation of the distribution of Ws is:√
n1n2(n1+n2+1)

12

So, the z score is calculated using:

z = statistic−mean
standard deviation =

Ws−
n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Normal Approximation

Notice the tables of Ws are only useful when n1 and n2 are
less than or equal to 25.
For larger samples, the distribution of Ws approaches
normal; which means we can calculate a z score for them.

The mean of the distribution of Ws is: n1(n1+n2+1)
2

And the standard deviation of the distribution of Ws is:√
n1n2(n1+n2+1)

12

So, the z score is calculated using:

z = statistic−mean
standard deviation =

Ws−
n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

For the current example

For our current example: police officers vs. taxi drivers we
calculate a z score of -2.738.

z = statistic−mean
standard deviation =

Ws−
n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

=
15− 5(5+6+1)

2√
5(6)(5+6+1)

12

= −2.738

So we could say the police officers scored significantly
lower than the taxi drivers because a critical z value of
-1.64 corresponds to a one-tailed test of z at 0.05 (negative
because we hypothesized the police would be lower).

http://www.mathsisfun.com/data/standard-normal-distribution-table.html
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Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Wilcoxon’s Matched-Pairs Signed-Ranks test

The Wilcoxon’s Matched-Pairs Signed-Ranks test is an
appropriate alternative to the Dependent Samples t test.

It is used when the assumptions for the Dependent
Samples t test can not be met.
Specifically it is used to determine if a significant difference
exists among two related sets of scores.

e.g., pretest to post test.

Like the previous Wilcoxon test, this one works with ranks
and the sum of ranks.

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Wilcoxon’s Matched-Pairs Signed-Ranks test

The Wilcoxon’s Matched-Pairs Signed-Ranks test is an
appropriate alternative to the Dependent Samples t test.
It is used when the assumptions for the Dependent
Samples t test can not be met.

Specifically it is used to determine if a significant difference
exists among two related sets of scores.

e.g., pretest to post test.

Like the previous Wilcoxon test, this one works with ranks
and the sum of ranks.

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Wilcoxon’s Matched-Pairs Signed-Ranks test

The Wilcoxon’s Matched-Pairs Signed-Ranks test is an
appropriate alternative to the Dependent Samples t test.
It is used when the assumptions for the Dependent
Samples t test can not be met.
Specifically it is used to determine if a significant difference
exists among two related sets of scores.

e.g., pretest to post test.

Like the previous Wilcoxon test, this one works with ranks
and the sum of ranks.

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Wilcoxon’s Matched-Pairs Signed-Ranks test

The Wilcoxon’s Matched-Pairs Signed-Ranks test is an
appropriate alternative to the Dependent Samples t test.
It is used when the assumptions for the Dependent
Samples t test can not be met.
Specifically it is used to determine if a significant difference
exists among two related sets of scores.

e.g., pretest to post test.

Like the previous Wilcoxon test, this one works with ranks
and the sum of ranks.

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Wilcoxon’s Matched-Pairs Signed-Ranks test

The Wilcoxon’s Matched-Pairs Signed-Ranks test is an
appropriate alternative to the Dependent Samples t test.
It is used when the assumptions for the Dependent
Samples t test can not be met.
Specifically it is used to determine if a significant difference
exists among two related sets of scores.

e.g., pretest to post test.

Like the previous Wilcoxon test, this one works with ranks
and the sum of ranks.

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Quick example

Suppose were were interested in documenting the
effectiveness of Xanax as an anti-anxiety treatment.

We gather 10 individuals who meet the diagnostic criteria
for general anxiety and measure their symptoms with a
standard anxiety survey.
Then, we administer a protocol of Xanax for two weeks and
follow that with another measure of their symptoms on the
anxiety survey.
We would expect the post test scores to be lower than the
pretest scores.

One-tailed test, lower end

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Quick example

Suppose were were interested in documenting the
effectiveness of Xanax as an anti-anxiety treatment.
We gather 10 individuals who meet the diagnostic criteria
for general anxiety and measure their symptoms with a
standard anxiety survey.

Then, we administer a protocol of Xanax for two weeks and
follow that with another measure of their symptoms on the
anxiety survey.
We would expect the post test scores to be lower than the
pretest scores.

One-tailed test, lower end

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Quick example

Suppose were were interested in documenting the
effectiveness of Xanax as an anti-anxiety treatment.
We gather 10 individuals who meet the diagnostic criteria
for general anxiety and measure their symptoms with a
standard anxiety survey.
Then, we administer a protocol of Xanax for two weeks and
follow that with another measure of their symptoms on the
anxiety survey.

We would expect the post test scores to be lower than the
pretest scores.

One-tailed test, lower end

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Quick example

Suppose were were interested in documenting the
effectiveness of Xanax as an anti-anxiety treatment.
We gather 10 individuals who meet the diagnostic criteria
for general anxiety and measure their symptoms with a
standard anxiety survey.
Then, we administer a protocol of Xanax for two weeks and
follow that with another measure of their symptoms on the
anxiety survey.
We would expect the post test scores to be lower than the
pretest scores.

One-tailed test, lower end

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Quick example

Suppose were were interested in documenting the
effectiveness of Xanax as an anti-anxiety treatment.
We gather 10 individuals who meet the diagnostic criteria
for general anxiety and measure their symptoms with a
standard anxiety survey.
Then, we administer a protocol of Xanax for two weeks and
follow that with another measure of their symptoms on the
anxiety survey.
We would expect the post test scores to be lower than the
pretest scores.

One-tailed test, lower end

Starkweather Module 11



Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Example Data

Pre Post Difference Rank of difference Signed Rank
15 8 7 2.5 2.5
18 10 8 4.5 4.5
17 8 9 6.5 6.5
19 11 8 4.5 4.5
20 13 7 2.5 2.5
22 12 10 8.5 8.5
16 18 -2 1 -1
24 12 12 10 10
23 14 9 6.5 6.5
21 11 10 8.5 8.5

T+ =
∑

positive ranks = 54
T− =

∑
negative ranks = −1
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Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Tcalc and Tcrit

Once we have the sum of both positive and negative
difference ranks, we compute Tcalc which is simply the
smaller of the two in absolute value.

Since T− = −1 is smaller in absolute value than T+ = 54,
then Tcalc = 1 (the absolute value of the smaller rank sum).

To find the critical value (Tcrit ), we use the number of
participants or cases (n = 10) and look in the T distribution
table, specifically the column with a significance level of
0.05 (the table linked below has only one column: the 0.05
values are listed).

As before, all the values in the table are for one-tailed tests.
http://comp9.psych.cornell.edu/Darlington/wilcoxon/wilcox5.htm
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Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Tcalc versus Tcrit

http://comp9.psych.cornell.edu/Darlington/wilcoxon/wilcox51.htm

So, the Tcrit (labeled S in the table linked above), for n = 10
would be 10 (with exact significance level at 0.04199) or we
could use 11 (with an exact significance level of 0.05273).

Remember, because we are dealing with ranks, Tcrit must
be a discrete number.

So, since Tcalc = 1 < 10 = Tcrit we reject the null
hypothesis and conclude that the post-test scores were
significantly lower than the pretest scores.
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Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

From T to z

When sample sizes are greater than 50, we can conduct a
z test with our ranked sums T .

The distribution of T is approximately normal when n > 50
with a mean of: n(n+1)

4

And a standard deviation of:
√

n(n+1)(2n+1)
24

All of which gives us what we need to compute z:

z =
T− n(n+1)

4√
n(n+1)(2n+1)

24
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Chi-square Wilcoxon Kruskal-Wallis Summary Rank-Sum Test Matched-Pairs Test

Current Example applied to z test

Our current example has T = 1 and n = 10 so;

z =
T− n(n+1)

4√
n(n+1)(2n+1)

24

=
1− 10(10+1)

4√
10(10+1)(2∗10+1)

24

= −2.701

Clearly, our z calculated value is more extreme than a
critical value of -1.64 (one-tailed, 0.05 significance).

http://www.mathsisfun.com/data/standard-normal-distribution-table.html
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Chi-square Wilcoxon Kruskal-Wallis Summary

Kruskal-Wallis One-way ANOVA

The Kruskal-Wallis test is a nonparametric replacement for
the One-way ANOVA when the assumptions of One-way
ANOVA are not met.

The Kruskal-Wallis test is a direct extension of the
Wilcoxon’s Rank-Sum test for independent groups.

Both are based on the sums of ranks.

As with the Wilcoxon’s Rank-Sum test we again rank all of
the scores (regardless of group membership) and then
sum the ranks for each group.
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Chi-square Wilcoxon Kruskal-Wallis Summary

Omnibus test of differences

The Kruskal-Wallis test is used to identify differences in
central tendency among more than 2 groups.

As with the One-way ANOVA, the Kruskal-Wallis test can
only tell us if there is a significant difference among the
central tendencies of the groups; it does not tell us where
the group differences are located.

Secondary analysis, such as the Wilcoxon’s Rank-Sum test
would be necessary (much like conducting post-hoc testing
in the ANOVA situation).
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Compute H

To calculate the Kruskal-Wallis test; compute H

H =
[

12
nt (nt+1)

]
∗
∑ R2

i
ni
− 3 (nt + 1)

where nt is the total number of participants, Ri is the sum
of the ranks in group i, and ni is the number of participants
in group i.
The comparison distribution is the chi-square distribution
with df = k − 1 where k is the number of groups.
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Quick Example

Suppose we added limousine drivers to our earlier
example comparing driving anger among police officers
and taxi drivers.

Police Taxi Limousine
Score Rank Score Rank Score Rank
8 1 27 13 16 9
15 7.5 28 14.5 15 7.5
12 3 19 11 14 6
10 2 17 10 13 4.5
13 4.5 26 12

28 14.5

Tied scores get tied ranks half-way between the two whole number
ranks they would occupy if sequential.
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Calculate H

First, we need the sum of each rank (Ri ) and the number of
participants in each group (ni ).

R1 = 1 + 7.5 + 3 + 2 + 4.5 = 18 and n1 = 5
R2 = 13 + 14.5 + 11 + 10 + 12 + 14.5 = 75 and n2 = 6
R3 = 9 + 7.5 + 6 + 4.5 = 27 and n3 = 4
Then we can calculate H

H =
[

12
nt (nt+1)

]
∗
∑ R2

i
ni
− 3 (nt + 1) =[

12
15(15+1)

]
∗
[

182

5 + 752

6 + 272

4

]
− 3 (15 + 1) = 11.2275
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Compare and make a decision

Our Hcalc (which is really a χ2 value) is 11.2275.

We have df = k − 1 = 3− 1 = 2 which with 0.05
significance level, yields a critical value of 5.991.

http://www.medcalc.be/manual/chi-square-table.php

So, since Hcalc = 11.2275 > 5.991 = χ2
crit we reject the null

hypothesis and conclude there was a significant difference
in driving anger among the three groups.

Secondary analysis, such as the Wilcoxon’s Rank-Sum test
would be necessary to determine where the differences
were among each group (much like conducting post-hoc
testing in the ANOVA situation).
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Summary of Module 11

Module 11 covered the following topics:

Chi-square tests
Wilcoxon’s Rank-Sum test
Wilcoson’s Matched-Pairs Signed-Ranks test
Kruskal-Wallis One-Way ANOVA
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This concludes Module 11

Until next time; have a nice day.

These slides initially created on: October 28, 2010
These slides last updated on: November 2, 2010

The bottom date shown is the date this Adobe.pdf file was
created; LATEX1 has a command for automatically inserting
the date of a document’s creation.

1This document was created in LATEX using the Beamer package
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