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SUMMARY 

Multivariable regression models are powerful tools that are used frequently in studies of clinical outcomes. 
These models can use a mixture of categorical and continuous variables and can handle partially observed 
(censored) responses. However, uncritical application of modelling techniques can result in models that 
poorly fit the dataset at hand, or, even more likely, inaccurately predict outcomes on new subjects. One must 
know how to measure qualities of a model's fit in order to avoid poorly fitted or overfitted models. 
Measurement of predictive accuracy can be difficult for survival time data in the presence of censoring. We 
discuss an easily interpretable index of predictive discrimination as well as methods for assessing calibration 
of predicted survival probabilities. Both types of predictive accuracy should be unbiasedly validated using 
bootstrapping or cross-validation, before using predictions in a new data series. We discuss some of the 
hazards of poorly fitted and overfitted regression models and present one modelling strategy that avoids 
many of the problems discussed. The methods described are applicable to all regression models, but are 
particularly needed for binary, ordinal, and time-to-event outcomes. Methods are illustrated with a survival 
analysis in prostate cancer using Cox regression. 

1. INTRODUCTION 

Accurate estimation of patient prognosis is important for many reasons. First, prognostic 
estimates can be used to inform the patient about likely outcomes of her disease. Second, the 
physician can use estimates of prognosis as a guide for ordering additional tests and selecting 
appropriate therapies. Third, prognostic assessments are useful in the evaluation of technologies; 
prognostic estimates derived both with and without using the results of a given test can be 
compared to measure the incremental prognostic information provided by that test over what is 
provided by prior information.' Fourth, a researcher may want to estimate the effect of a single 
factor (for example, treatment given) on prognosis in an observational study in which many 
uncontrolled confounding factors are also measured. Here the simultaneous effects of the 
uncontrolled variables must be controlled (held constant mathematically if using a regression 
model) so that the effect of the factor of interest can be more purely estimated. An analysis of how 
variables (especially continuous ones) affect the patient outcomes of interest is necessary to 
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ascertain how to control their effects. Fifth, prognostic estimation is useful in designing random- 
ized clinical trials. Both the decision concerning which patients to randomize and the design of 
the randomization process (for example, stratified randomization using prognostic factors) are 
aided by the availability of accurate prognostic estimates before randomization.* Lastly, accurate 
prognostic models can be used to test for differential therapeutic benefit or to estimate the clinical 
benefit for an individual patient in a clinical trial, taking into account the fact that low-risk 
patients must have less absolute benefit (lower change in survival pr~bability).~ 

To accomplish these objectives, analysts must create prognostic models that accurately reflect 
the patterns existing in the underlying data and that are valid when applied to comparable data in 
other settings or institutions. Models may be inaccurate due to violation of assumptions, 
omission of important predictors, high frequency of missing data and/or improper imputation 
methods, and especially with small datasets, overfitting. The purpose of this paper is to review 
methods for examining lack of fit and detection of overfitting of models and to suggest guidelines 
for maximizing model accuracy. Section 2 covers initial steps such as imputation of missing data, 
pre-specification of interactions, and choosing the outcome model. Section 3 has an overview of 
the need for data reduction. In Section 4, we discuss the process of checking whether a hy- 
pothesized model fits the data. In Section 5, measures of predictive accuracy are covered. These 
are not directly related to lack of fit but rather to the ability of the model to discriminate and be 
well calibrated when applied prospectively. Section 6 covers model validation and demonstrates 
advantages of resampling techniques. Section 7 provides one modelling strategy that takes 
into account ideas from earlier sections and lists some miscellaneous concerns. Most of the 
methods presented here can be used with any regression model. Section 8 briefly describes some 
statistical software useful in carrying out the strategy summarized in Section 7. Section 9 has 
a detailed case study using a Cox regression model for time until death in a clinical trial studying 
prostate cancer. 

2. PRELIMINARY STEPS 

Before analyses begin, the researcher must specify the relationships of interest and define and 
assemble the response variable and the potential predictors. At this point a frequent problem is 
the extent of missing data. Some methods of dealing with missing data are given in References 
4-7. Deletion of cases with missing predictors causes bias and increased variance. Even though 
caution should be taken when imputing missing values, it is usually better to estimate selected 
data values than to delete an entire subject's record. Simple methods of imputation include the 
use of the median, mean, or mode for missing values. This method is biased and inefficient when 
predictors are correlated with one a n ~ t h e r . ~  Deriving customized regression models for predic- 
ting each predictor from all other predictors is a better method. Kuhfeld' has implemented 
a general imputation method that allows predictors to be non-linearly (and even non-monotoni- 
cally) related to one another. This method has been modified by Harrell and implemented in the 
S-Plus transcan function (Section 8), which yields stable imputations even when the fraction of 
missing values is quite large. In some cases, surrogate predictors, not intended to enter the model 
directly, are assembled to assist in imputing missing predictors in the model. 

It is important that maximum information be extracted from predictors and response. Because 
of this and because of problems with data reliability, when one has a choice of describing 
a concept with a categorical variable or a continuous one, the continuous one is preferred. Subject 
matter knowledge should guide the selection of candidate predictors. Early deletion of those with 
little chance of being predictive or of being measured reliably will result in models with less 
overfitting and greater generalizability. 
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Plausible interactions should be carefully chosen because of problems of multiple parameters 
(see reference 9 for additional thoughts on interactions). Certain types of interactions that have 
frequently been found to be important in predicting clinical outcomes and thus may be pre- 
specified are: 

1. Interactions between treatment and the severity of disease being treated. Patients with little 
disease have little opportunity to receive benefit. 

2. Interactions involving age and risk factors. Old subjects are generally less affected by risk 
factors. They have been robust enough to survive to their current age with risk factors 
present. 

3. Interactions involving age and type of disease. Some diseases are incurable and have the 
same prognosis regardless of age. Others are treatable or have less effect on younger 
patients. 

4. Interactions between a measurement and the state of a subject during a measurement. For 
example, left ventricular function measured at rest may have less predictive value and thus 
have a smaller slope versus outcome than function measured during stress. 

5. Interactions between calendar time and treatment. Some treatments evolve or their effec- 
tiveness improves with staff training. 

6. Interactions between quality and quantity of a symptom. 

Careful fitting of a statistical model is essential so that interactions, if present, represent biologic 
phenomena rather than general lack of fit of the model. 

A tentative choice of the statistical model is sometimes based on previous distributional 
examinations, but it is frequently based on maximizing how available information is used. Binary 
and ordinal logistic models1c13 are frequently used for discrete completely assessed outcomes, 
and the Cox proportional hazards and parametric survival models16 are frequently 
used for censored time-to-event data. It is quite common to change the model after initial 
modelling of predictors, because only then can adjusted distributional properties of Y and joint 
properties of X and Y be assessed (Section 4.3). 

3. DATA REDUCTION 

Multivariable statistical models when developed carefully are excellent tools for making prognos- 
tic predictions. However, when the assumptions of a model are grossly violated or when a model 
is used unwisely for a given patient sample, the performance of the model may be poor. For 
example, when the analyst has fitted not only real trends that further data would support, but in 
addition has fitted idiosyncrasies in the particular dataset by analysing too many variables, the 
model may predict inaccurately for a new group of patients. Only with appropriate model 
validation can an apparently accurate model be shown to be inaccurate. 

In developing a set of predictions based on 100 patients, no analyst would divide the patients 
into 50 subgroups and quote the average outcome for each subgroup. Yet many articles have 
appeared in the clinical literature where 20-50 variables were analysed on 100 patients. Re- 
searchers apparently do not realize that when many predictor variables are analysed, variable 
screening based on statistical significance and stepwise variable selection involve multiple 
comparisons problems that lead to unreliable models. These methods are therefore not viable for 
data reduction (see Reference 17 for a condemnation of stepwise variable selection). 

The situation is actually worse than merely considering the number of predictors. If the analyst 
used associations with Y to entertain non-linearities in the predictors or interaction terms, these 
constructed variables need to be counted (see Table 11 for an example). We speak of the total 
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predictor degrees of freedom (d.f.), p, as the total number of parameters (columns of the design 
matrix) examined during the course of analysis, excluding intercept term(s). If graphical or other 
informal analyses are used to guide the analysis, it is difficult to define p - one needs to estimate 
the effective number of parameters considered according to the flexibility of fits that were 
considered.” The quantity p is the effective number of parameters allowed for consideration, that 
is, the number of regression coefficients estimated formally or informally without algebraic 
restrictions. 

To enhance the accuracy of a model, the number of variables used must be reduced or the 
model must be simplified unless the sample is large. Unless a formal penalized estimation 
technique is used,lg multiple comparisons problems that arise from ‘peeking’ at the outcome 
variable must be eliminated; data reduction methods must be used that do not utilize the outcome 
variable. Harrell et ~ 1 . ~ ~  discussed some available data reduction methods and two regression 
modelling strategies based on these methods that yield reliable models. They suggest as a rough 
rule of thumb that in order to have predictive discrimination that validates on a new sample, no 
more than m/10 predictor d.f. p should be examined to fit a multiple regression model, where m is 
the number of uncensored event times (for example, deaths) in the training sample (the sample 
used in fitting the model). For binary outcomes m is the number of patients in the less frequent 
outcome category. If p > m/lO, a data reduction technique such as principal components, 
variable clustering, or deriving clinical summary should be used until the number of 
summary variables to use as candidates in the regression analysis is less than m/10. 

Smith et ~ 1 . ’ ~  found in one series of simulations that the expected error* in Cox model 
predicted 5-year survival probabilities was below 0.05 when p < m/20 for ‘average’ subjects and 
below 0.10 when p < m/20 for ‘sick‘ subjects. For ‘average’ subjects, m/10 was adequate for 
preventing expected errors > 0.1. 

Better and more general than any of these rules is the reduction of d.f. using a shrinkage 
method (Section 5.4). 

4. VERIFYING MODEL ASSUMPTIONS: CHECKING LACK OF FIT 

4.1. Linearity assumption 

In their simplest forms, all usual regression models assume that for a certain scale of Y, each 
predictor variable X is linearly related to Y. In the logistic regression model for binary responses, 
the initial assumption is that an X is linearly related to the log odds of response (log[P/(l - P)], 
where P is the probability of response) for patients subgrouped by values of X. In the Cox 
proportional hazards survival model, one initially assumes that at each time t, log[ - log(S(t))] 
and equivalently logI(t) are linearly related to X, where S ( t )  is the probability of surviving until 
time t and I ( t )  is the hazard function or instantaneous event rate at time t. It is easy to envision 
cases where strong violations in the linearity assumption (say a U-shaped age relationship) will 
result in erroneous predictions. 

A direct way to check the linearity assumption, and to determine how to transform a specific 
X if necessary, involves expanding X into multiple terms that can flexibly fit any smooth 
relationship. The extra terms can be statistically tested to assess the adequacy of a linear 
relationship, and the terms in toto can estimate the true transformation of X that would result in 

* Absolute difference between predicted and actual 5-year survival probabilities in a simulation study with known 
survival functions 
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a linear relationship with Y. A common choice of expansion is to add X2 and perhaps higher 
powers of X to the model. A more flexible approach is the use of piecewise linear regression or 
piecewise cubic polynomials (spline functions). See references 25-27 for methods of fitting such 
functions. 

As an alternative, smoothed residual plots can be used to determine the functional form for 
each predictor. For binary logistic models, smoothed partial residual are useful, and 
for the Cox model, smoothed martingale residuals plots detect regression shape  departure^.^' 
Partial residuals in logistic models are particularly computationally efficient, as the analyst can fit 
a simple model that is linear in all predictors and then use the residuals to obtain estimates of the 
true functional forms. However, the plot for each predictor does assume that the other predictors 
operate linearly and that all predictors are additive (see below). The usual martingale residual 
plot for the Cox model provides an estimate of the departure from linearity for the predictor. 

4.2. Additivity assumption 

A further assumption of most regression models is additivity of effects of the predictors (lack of 
interaction). Interactions can be tested and described by adding cross-product terms. It must be 
borne in mind that interactions can take the form of a change in shape (for example, linear age 
relationship for males, quadratic for females), so the cross-products needed in the model are not 
always simple ones. 

The number of possible cross-product terms is usually so large (especially when variables have 
nonlinear or multiple dummy variable components) that the predictors to check for additivity 
must usually be specified before examining the data. Otherwise, type I errors and overfitting will 
be significant problems. A compromise solution is to do pooled interaction tests. For example, in 
a model with predictors age, sex, and dose, one may test all second-order interactions involving 
age, all interactions involving sex, and all involving dose. A combined test of all two-way 
interactions is also useful. If a pooled test is not significant, it may be unwise to pursue significant 
component interactions. 

4.3. Distributional assumption 

The previous sections dealt with the proper specification of the X-structure of the model. Once 
the analyst has determined which predictors are to be used and how they should be represented in 
the model, most models have distributional assumptions that also need verification. The Cox 
model does not assume anything about the survival function S ( t )  across t for an individual, but it 
does assume how survival curves for different subjects are related. Specifically, it assumes that 
log[ - log(S(t))] for different subjects are equidistant over time, or equivalently that hazard 
functions for any two subjects are proportional over time. This proportional hazards assumption 
can be checked using smoothed plots of a special type of residual from the model called the 
Schoenfeld r e ~ i d u a l . ~ ' . ~ ~  It can also be checked using hazard ratio plots, plots of modelled versus 
stratified estimates,' and several other methods.33 Unlike the Cox model, fully parametric models 
(for example, Weibull or log-normal survival models) have a distributional assumption even when 
there are no covariables. If the form of S ( t )  does not fit the data for these models, estimates of S(t)  
will be inaccurate. 

That is, a Cox model is fitted with the variable in question appearing as a covariate for which regression coeEcient(s) are 
estimated, then a second model is fitted where that variable is used as a stratification factor that modifies the underlying 
survival function (but which does not have regression coefficients). 
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5. QUANTIFYING PREDICTIVE ACCURACY 

There are at least three uses of measures of predictive accuracy: 

1. To quantify the utility of a predictor or model to be used for prediction or for screening to 
identify subjects at increased risk of a disease or clinical outcome.! 

2. To check a given model for overfitting (fitting noise resulting in unstable regression 
coefficients) or lack of fit (improper model specification, omitted predictors, or underfitting). 
More will be said about this later. 

3. To rank competing methods or competing models. 

The measures discussed below may be applied to the assessment of a predictive model using the 
same sample on which the model was developed. However, this assessment is seldom of interest, 
as only the most serious lack of fit will make a model appear not to fit on the sample for which it 
was tailor-made. Of much greater value is the assessment of accuracy on a separate sample or 
a bias-corrected estimate of accuracy on the training sample. This assessment can detect gross 
lack of fit as well as overfitting, whereas the apparent accuracy from the original model 
development sample does not allow one to quantify overfitting. Section 6 discusses how the 
indexes described below may be estimated fairly using a validation technique. 

5.1. General notions 

In the simplest case, when the response being predicted is a continuous variable that is measured 
completely (as distinct from censored measurements caused by termination of follow-up before all 
subjects have had the outcome of interest), one commonly used measure of predictive accuracy is 
the expected squared error of the estimate. This quantity is defined as the expected squared 
difference between predicted and observed values, that is, the average squared difference between 
predicted and observed values if the experiment were repeated infinitely often and new estimates 
were made at each replication. The expected squared error can also be expressed as the square of 
the bias of the estimate plus the variance of the estimate. Here bias refers to the expected value of 
the estimate minus the quantity being estimated, such as the mean blood pressure. The expected 
squared error is estimated in practice by the usual mean squared error. 

There are two other terms for describing the components of predictive accuracy: calibration 
and discrimination. Calibration refers to the extent of bias. For example, if the average predicted 
mortality for a group of similar patients is 0.3 and the actual proportion dying is 0.3, the 
predictions are well calibrated. Discrimination measures a predictor’s ability to separate patients 
with different responses. A weather forecaster who predicts a 015 chance of rain every day of the 
year may be well calibrated in a certain locality if the average number of days with rain is 55 per 
year, but the forecasts are uninformative. A discriminating forecaster would be one who assigns 
a wide distribution of predictions and whose predicted risks for days where rain actually occurred 
are larger than for dry days. If a predictive model has poor discrimination, no adjustment or 

Often one wishes to designate a model as ‘minimally acceptable’ on the basis of some statistic, but in many cases it is 
only possible to judge a model’s accuracy relative to another model. For example, a model for the probability of death 
after open heart surgery may yield predicted probabilities that range from 0.001 to 0.1, so the model will not have a high 
correlation (say 0.13) between predicted probability and observed outcome, but it may still be useful. If that model does 
not fully adjust for patient risk factors, it may be inadequate for adjusting for case mix when comparing mortalities among 
several hospitals. A more sensitive model with a correlation of, say, 0,135 may adjust away apparent differences in 
mortality among hospitals. 
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calibration can correct the model. However, if discrimination is good, the predictor can be 
calibrated without sacrificing the discrimination (see Section 6 for a method for calibrating 
predictions without needing more data). Here, calibrating predictions means modifying them, 
without changing their rank order, such that the predictions are perfectly calibrated. van 
Houwelingen and le C e ~ s i e ~ ~  present extensive information on predictive accuracy and model 
validation. 

5.2. Continuous uncensored outcomes 

Discrimination is related to the expected squared error and to the correlation between predicted 
and observed responses. In the case of ordinary multiple linear regression, discrimination can be 
measured by the squared multiple correlation coefficient RZ, which is defined by 

R2 = 1 - (n - p)MSE/(n - l)$, 

where n is the number of patients, p is the number of parameters estimated, MSE is the mean 
squared error of prediction (XI= ( Y i  - f J z / ( n  - p), Y = predicted Y), and St is the sample 
variance of the dependent variable. When RZ = 1, the model is perfectly able to separate all 
patient responses based on the predictor variables, and MSE = 0. 

For a continuous uncensored response Y, calibration can be assessed by a scatter plot of 
f (predicted Y )  versus Y, optionally using a non-parametric smoother to make trends more 
evident. 

5.3. Discrete or censored outcomes 

When the outcome variable is dichotomous and predictions are stated as probabilities that an 
event will occur, calibration and discrimination are more informative than expected squared 
error alone in measuring accuracy. 

One way to assess calibration of probability predictions is to form subgroups of patients and 
check for bias by comparing predicted and observed responses (reference 29, pp. 140-145). For 
example, one may group by deciles of predicted probabilities and plot the mean response 
(proportion with the outcome) versus the mean prediction in the decile group. However, the 
groupings can be quite arbitrary. Another approach is to use a smoother such as the ‘super 
smoother’35 or a scatterplot smoother36 to obtain a non-parametric estimate of the relationship 
between f and Y .  Such smoothers work well even when Y is binary. The resulting smoothed 
function is a nonparametric calibration or reliability curve. Smoothers operate on the raw data 
( f ,  Y )  and do not require grouping f ,  but they do require one to choose a smoothing parameter 
or bandwidth. 

As an example, consider a 7-variable binary logistic regression model to predict the probability 
that a certain disease is present. The model was developed on a simulated 200-subject dataset of 
whom 93 had a final diagnosis that is positive. While fixing the intercept and 7 regression 
coefficients estimated from the training sample, predictive probabilities of disease were computed 
for each of 200 subjects in a separate sample, of whom 104 had the disease. The non-parametric 
calibration curve was estimated using a local least squares scatterplot smoother36 with the S-Plus 
function 10wess,~~ using the ‘no iteration’ option. The smoothed calibration graph is shown in 
Figure 1. Also shown is the proportion of patients with disease, grouped by intervals of predicted 
probability each containing 50 patients. 

Note the typical regression to the mean effect caused by overfitting: predicted probabilities in 
the range of 0.3 to 0 5  are too low. Actual probabilities are closer to the mean (104/200 = 0.52). 
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Figure 1. Smooth non-parametric calibration curve (dashed line), subgroup estimates (dots), and ideal relationship 
(dotted line). The distribution of predicted probabilities is shown above the x-axis. ‘Actual probability’ is an unbiased 

estimate of the true probability of response given the level of the predicted probability 

When Y is binary and f is the predicted probability that Y = 1 versus Y = 0, the Brier score3* 
or average ( Y  - f)’ is a commonly used mean squared error-type measure of predictive 
accuracy. 

For survival models, one may choose one or more times ( t l ,  tz, ... , tk), and plot the predicted 
probability of surviving until each t j  versus the actual fraction of patients surviving past ti. The 
problem here is that we cannot define Yi = 1 if patient i survives past time ti and then plot the 
mean Y (by deciles of f or using a smoother) against the mean f, since subjects not followed until 
time t j  are censored, that is, their final outcome status is unknown. One solution is to divide the 
sample into intervals of f so that there are 50 subjects in each interval of predicted survival, and 
then plot the mean f within each interval versus the Kaplan-Meier3’ survival estimate at time ti. 

5.4. Shrinkage 

Shrinkage is the flattening of the plot of (predicted, observed) away from the 45” line, caused by 
overfitting. It is a concept related to regression to the mean. One can estimate the amount of 
shrinkage present (using external validation) or the amount likely to be present (using bootstrap- 
ping, cross-validation or simple heuristics). A shrinkage coefficient can be used to quantify 
overfitting or one can go a step further and use the coefficient to re-calibrate the model. Shrinkage 
can be defined as a multiplier y of X g  (excluding intercept@)) needed to make y X f l  perfectly 
calibrated for future data. The heuristic shrinkage estimator of van Houwelingen and le Cessiej4 
(see also reference 40) is 

(2) 
model x 2  - p 

j?=  
model xz ’ 

where p is the number of regression parameters (here excluding any intercept@) but including all 
non-linear and interaction effects) and the model xz is the total likelihood ratio xz statistic 
(computed using the full set of p parameters) for testing whether any predictors are associated 
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with Y! For linear regression, van Houwelingen and le Cessie’s heuristic shrinkage estimate 
reduces to the ratio of the adjusted R 2  to the ordinary R2 (derivable from reference 34, Eq. 70). 

As an example, suppose that an analyst has considered 10 predictor variables, 6 of which were 
allowed to enter the model non-linearly (with 2 non-linear terms for each), and tested 8 interac- 
tion terms, for a total of 30 degrees of freedom. The model x2 is 100 for the full model fit with 
p = 30 d.f. The expected shrinkage is 0.70, indicating that about 0.3 of the model fit is ‘noise’. The 
‘final model’ obtained from forward variable selection contains only 3 significant coefficients and 
has x2 = 81, but overfitting is quantified using the 30 candidate d.f. In this example, the number of 
variables, transformations, and interactions tried was too many for the sample size, and the 
resulting model is expected to be unstable. As a rough estimate, 0.3 of what was learned from 
developing the model was really non-replicable noise. 

For mild overfitting in the case where the model is needed only to rank likely outcomes and not 
predict absolute risks, shrinking the regression coefficients will not help since it will not increase 
real discrimination. If the model is badly overfitted, the model may actually have negative (worse 
than random) discrimination on new data, and it will have poor calibration. The following 
heuristic strategy can then be used to determine whether data reduction is likely to result in 
a model that has any discrimination and how much reduction is required to yield reliable 
non-shrunken predictions. 

First, fit a full model with all candidate variables, non-linear terms, and hypothesized interac- 
tions. Let p denote the number of parameters in this model, aside from any intercept(s). Let LR 
denote the likelihood ratio x z  for this full model. The estimated shrinkage is (LR - p)/LR. If this 
falls below 0.85, for example, we may be concerned. Let q denote the regression degrees of 
freedom for a reduced model. In a ‘best case’, the variables removed to arrive at the reduced 
model would have no association with Y. The expected value of the x 2  statistic for testing those 
variables would then be p - q. The shrinkage for the reduced model is then on average 
[LR - (p - q) - q]/[LR - (p - q)] .  Solving for q gives 4 < (LR - p)/9. Therefore, reduction of 
dimensionality down to q degrees of freedom would be expected to achieve < 10 per cent 
shrinkage. With these assumptions, there is no hope that a reduced model would have acceptable 
calibration unless LR > p + 9. If the information explained by the omitted variables is less than 
one would expect by chance (for example, their total x 2  is extremely small), a reduced model could 
still be beneficial, as long as the conservative bound (LR - q)/LR > 0-9 or q < LR/10 were 
achieved. This conservative bound assumes that no x 2  is lost by the reduction, that is, that the 
final model x2 GZ LR. This is unlikely in practice, since the data reduction must be only X-driven. 

As an example, suppose that a binary logistic model is being developed from a sample 
containing 45 events on 150 subjects. A 10: 1 events: d.f. rule suggests we can analyse 4.5 degrees of 
freedom. The analyst wishes to analyse age, sex, and 10 other variables. It is not known whether 
interaction between age and sex exists, and whether age is linear. A restricted cubic spline is fitted 
with 4 knots (requiring two non-linear terms), and a linear interaction is allowed between age and 
sex. These two variables then need 3 + 1 + 1 = 5 degrees of freedom. The other 10 variables 
are assumed to be linear and to not interact with themselves or age and sex. There is a total of 
15 d.f. The full model with 15 d.f. has LR = 50. Expected shrinkage from this model is 

When stepwise fitting is done, the definition of p is confusing. Many analysts act as if the final model chosen with 
stepwise variable selection was pre-specified, whether interpreting R’, confidence limits, or P-values. For estimating the 
likely shrinkage, it has been shown that p is much closer to the number of candidate d.f. than to the number of parameters 
fitted in a ‘final’ model.40 On a similar note, reference 18 showed how to adjust a linear test of association for having done 
a test of quadratic effect, concluding that testing the single d.f. statistic for association as if it had 2 d.f. is nearly optimal. 
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(50 - 15)/50 = 0.7. Since LR > 15 + 9 = 24, some reduction might yield a better validating 
model. Reduction to q = (50 - 15)/9w4 d.f. would be necessary, assuming the reduced LR is 
about 50 - (15 - 4) = 39. In this case the 10: 1 rule yields about the same value for q. The analyst 
may be forced to assume that age is linear, modelling 3 d.f. for age and sex. The other 10 variables 
would have to be reduced to a single variable using principal components or another scaling 
technique. This single variable may not be interpretable, but using a single score is better than 
deleting all 10 variables from consideration. If the goal of the analysis is to make a series of 
hypothesis tests (adjusting P-values for multiple comparisons) instead of to predict future 
responses, the full model would have to be used. 

B~o t s t r app ing~~  and cro~s-validation~~ may also be used to estimate shrinkage factors. As 
mentioned above, shrinkage estimates are useful in their own right for quantifying overfitting, and 
they are also useful for ‘tilting’ the predictions so that the (predicted, observed) plot does follow 
the 45” line, by multiplying all of the regression coefficients by 9. However, for the latter use it is 
better to follow a more rigorous approach such as penalized maximum likelihood estimation,” 
which allows the analyst to shrink different parts (for example, non-linear terms or interactions) 
of the equation more than other parts.42 

5.5. General discrimination index 

Discrimination can be defined more uniquely than calibration. It can be quantified with 
a measure of correlation without requiring the formation of subgroups or requiring smoothing. 

When dealing with binary dependent variables or continuous dependent variables that may be 
censored when some patients have not suffered the event of interest, the usual mean squared 
error-type measures do not apply. A c (for concordance) index’ is a widely applicable measure of 
predictive discrimination - one that applies to ordinary continuous outcomes, dichotomous 
diagnostic outcomes, ordinal outcomes, and censored time until event response variables. This 
index of predictive discrimination is related to a rank correlation between predicted and observed 
outcomes. It is a modification of the Kendall--Goodman-Kruskal-Somers type rank correlation 
index43 and was motivated by a modification of Kendall’s z by Brown et ~ 1 . ~ ~  and Schemper?’ 

The c index is defined as the proportion of all usable patient pairs in which the predictions and 
outcomes are concordant. The c index measures predictive information derived from a set of 
predictor variables in a model. In predicting the time until death, c is calculated by considering all 
possible pairs of patients, at least one of whom has died. If the predicted survival time is larger for 
the patient who lived longer, the predictions for that pair are said to be concordant with the 
outcomes. If one patient died and the other is known to have survived at least to the survival time 
of the first, the second patient is assumed to outlive the first. When predicted survivals are 
identical for a patient pair, rather than 1 is added to the count of concordant pairs in the 
numerator of c. In this case, one is still added to the denominator of c (such patient pairs are still 
considered usable). A patient pair is unusable if both patients died at the same time, or if one died 
and the other is still alive but has not been followed long enough to determine whether she will 
outlive the one who died. 

Instead of using the predicted survival time to calculate c, the predicted probability of surviving 
until any fixed time point can be used equivalently, as long as the two estimates are one-to-one 
functions of each other. This holds for example if the proportional hazards assumption is 
satisfied. 

For predicting binary outcomes such as the presence of disease, c reduces to the proportion of 
all pairs of patients, one with and one without the disease, in which the patient having the disease 
had the higher predicted probability of disease. As before, pairs of patients having the same 
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predicted probability get 3 added to the numerator. The denominator is the number of patients 
with disease multiplied by the number without disease. In this binary outcome case, c is 
essentially the Wilcoxon-Mann-Whitney statistic for comparing predictions in the two outcome 
groups, and it is identical to the area under a receiver operating characteristic (ROC) c ~ r v e . ~ ~ * ~ '  
Liu and Dyer4' advocate the use of rank association measures such as c in quantifying the impact 
of risk factors in epidemiologic studies. 

The c index estimates the probability of concordance between predicted and observed re- 
sponses. A value of 0.5 indicates no predictive discrimination and a value of 1.0 indicates perfect 
separation of patients with different outcomes. For those who prefer instead a rank correlation 
coefficient ranging from - 1 to + 1 with 0 indicating no correlation, Somers' D rank correlation 
index is derived by calculating 2(c - 03) . Either c or the rank correlation index can be used to 
quantify the predictive discrimination of any quantitative predictive method, whether the 
response is continuous, ordinal, or binary. 

Even though rank indexes such as c are widely applicable and easily interpretable, they are not 
sensitive for detecting small differences in discrimination ability between two models. This is due 
to the fact that a rank method considers the (prediction, outcome) pairs (0.01,0), (0.9, 1) as no 
more concordant than the pairs (0.05,0), (0.8, 1). A more sensitive likelihood-ratio X2-based 
statistic that reduces to R2 in the linear regression case may be s u b s t i t ~ t e d . ~ ~ - ~ '  Korn and 
Simons2 have a very nice discussion of various indexes of accuracy for survival models. 

6. MODEL VALIDATION METHODS 

As mentioned before, examination of the apparent accuracy of a multivariable model using the 
training dataset is not very useful. The most stringent test of a model (and of the entire data 
collection system) is an external validation - the application of the 'frozen' model to a new 
population. It is often the case that the failure of a model to validate externally could have been 
predicted from an honest (unbiased) 'internal' validation. In other words, it is likely that many 
clinical models which failed to validate would have been found to fail on another series of subjects 
from the original source, because overfitting is such a common problem. The principal methods 
for obtaining nearly unbiased internal assessments of accuracy are data-~plitting,~~ cross-ualida- 
lions4 and bootstr~pping.~"~~ In data-splitting, a random portion, for example 5, of the sample is 
used for all model development (data transformations, stepwise variable selection, testing interac- 
tions, estimating regression coefficients, etc.). That model is 'frozen' and applied to the remaining 
sample for computing calibration statistics, c, etc. The size of the validation sample must be such 
that the relationship between predicted and observed outcomes can be estimated with good 
accuracy, and the remaining data are used as the training (model development) sample. Data- 
splitting is simple, because all the modelling steps, which may include subjective judgements, are 
only done once. Data-splitting also has an advantage when it is feasible to make the single split 
with respect to geographical location or time, resulting in a more stringent validation that 
demonstrates generalizability. However, in addition to severe difficulties listed below, data 
splitting does not validate the final model, if one desires to recombine the training and test data to 
derive a model for others to use. 

Cross-validation is repeated data-splitting. To obtain accurate estimates using cross-valida- 
tion, more than 200 models may need to be developed and tested,54 with results averaged over the 
200 repetitions. For example, in a sample of size n = 1O00, the modelling process (all components 
of it!) could be done 400 times, leaving out a random 50 subjects each time and developing 
the model on the 950 remaining subjects. The benefits of cross-validation over data-splitting are 



372 F. HARRELL, K. LEE AND D. MARK 

clear; the size of the training samples can be much larger, so less data are discarded from the 
estimation process. Secondly, cross-validation reduces variability by not relying on a single 
sample split. 

Efron has shown that cross-validation is relatively inefficient due to high variation of accuracy 
estimates when the entire validation process is re~eated.~” Data-splitting is far worse; the indexes 
of accuracy will vary greatly with different splits. Bootstrapping is an alternative method of 
internal validation that involves taking a large number of samples with replacement from the 
original sample. Bootstrapping provides nearly unbiased estimates of predictive accuracy that are 
of relatively low variance, and fewer model fits are required than cross-validation. Bootstrapping 
has an additional advantage that the entire dataset is used for model development. As others have 
shown, data are too precious to waste.59s60 

Suppose that we wish to estimate the expected value (for new patient samples similar to the 
derivation sample) of the Somers’ D rank correlation coefficient between predicted and observed 
survival time. The following steps can be used (see references 55, 58 and 60 for the basic method 
when applied to binary outcomes): 

1. Develop the model using all n subjects and whatever stepwise testing is deemed necessary. 
Let Dapp denote the apparent D from this model, i.e., the rank correlation computed on the 
same sample used to derive the fit. 

2. Generate a sample of size n with replacement from the original sample (for both predictors 
and the response). 

3. Fit the full or possibly stepwise model, using the same stopping rule as was used to derive 
Dam. 

4. Compute the apparent D for this model on the bootstrap sample with replacement. Call it 

5. ‘Freeze’ this reduced model, and evaluate its performance on the original dataset. Let 

6. The optimism in the fit from the bootstrap sample is Dbool - Dorip. 
7. Repeat steps 2 to 6 10Ck200 times. 
8. Average the optimism estimates to arrive at 0. 
9. The bootstrap corrected performance of the original stepwise model is D,,, - 0. This 

difference is a nearly unbiased estimate of the expected value of the external predictive 
discrimination of the process which generated DapV In other words, Dapp - 0 is an honest 
estimate of internal validity, penalizing for overfitting. 

Dboot. 

Dorig denote the D. 

As an example, suppose we want to validate a stepwise Cox model developed from, say, a sample 
of size n = 300 with 30 events. The candidate regressors are age, age2, sex, mean arterial blood 
pressure (MBP), and a non-linear interaction between age and sex with the terms age x sex and 
age2 x sex. MBP is assumed to be linear and additive. Denote these variables by the numbers 1-6. 
The model x2 is 45 with 6 d.f., so the approximate expected shrinkage is = 0.87, or 0-13 
overfitting, so some caution needs to be exercised in using the estimated model coefficients and 
hence in using extreme predicted survival probabilities without calibration (shrinkage). The D for 
the full model is 0.42. A step-down variable selection using Akaike’s information criterion 
(AIC)34*61 as a stopping rule (x2 for set of variables tested > 2 x d.f.) resulted in a model with the 
variables age, age’, sex, age x sex. The reduced model had D = 0.39, a typical loss due to deleting 
marginally important but statistically insignificant variables. Two-hundred bootstrap repetitions 
are done, repeating the variable selection for each sample using the same stopping rule. We want 
to detect whether the D = 0.39 is likely to validate in a new series of subjects from the same 
population. The first five samples might yield the results shown in Table I. 
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Table I. Example validation of predictive discrimination 

Re-sample Dboot Variables retained D b O O l  Dorip Optimism 
Full model Reduced model 

1 0.45 1,2,3,5,6 044 037 0.07 
2 0.46 172 0.34 030 0.04 
3 0.42 1,Z 3,4 0.37 0.34 0.03 
4 043 1,2,3,5 0.42 039 0.03 
5 0.41 1,3,4 0.39 037 002 

The average optimism is 0.038, so the bootstrap estimate of the expected validation of D,,, is 
0.39 - 0.038 = 0.352. The analyst may or may not be worried about the 0.038 overfitting, but the 
best estimate of predictive discrimination is D = 0.352 - this is a better estimate of the likely 
‘external’ validation accuracy than is 0-39 if all other aspects of the study design remain constant. 
The D = 0.352 is the honest estimate of predictive accuracy that should be quoted when the 
researchers document the accuracy of the reduced model that was developed on the entire dataset 
using a stepwise variable selection algorithm. 

It is usually informative to repeat the bootstrap validation with and without stepwise variable 
selection. Usually, the amount of predictive information lost by deleting marginal variables is not 
offset by the decreased optimism of the stepwise model. One way to demonstrate this point is to 
observe how often ‘insignificant’ clinical predictors have clinically sensible signs on their regres- 
sion coefficients. Stepwise variable selection, which requires binary decisions about the inclusion 
of variables (unlike shrinkage), causes information to be lost.2 

The same strategy can be used to estimate the over-optimism in an R2 measure49 from the 
original model fit. For estimating the prediction error at time t in a survival model, similar steps 
could also be used. Instead of validating a correlation D, we substitute for example the statistic 
D = difference between mean predicted 2-year survival probability and Kaplan-Meier 2-year 
survival estimate. The survival estimates are made by, say, deciles of predicted 2-year survival 
from the original model fit using the following steps, for example: 

1. Develop the model using all subjects. 
2. Compute cut points on predicted survival at 2 years so that there are m patients within each 

interval (m = 50 or 100 typically). 
3. For each interval of predicted probability, compute the mean predicted 2-year survival and 

the Kaplan-Meier 2-year survival estimate for the group. 
4. Save the apparent errors - the differences between mean predicted and Kaplan-Meier 

survival. 
5. Generate a sample with replacement from the original sample. 
6. Fit the full model. 
7. Do variable selection and fit the reduced model. 
8. Predict 2-year survival probability for each subject in the bootstrap sample. 
9. Stratify predictions into intervals using the previously chosen cut points. 

10. Compute Kaplan-Meier survival at 2 years for each interval. 
11. Compute the difference between the mean predicted survival within each interval and the 

12. Predict 2-year survival probability for each subject in the original sample using the model 
Kaplan-Meier estimate for the interval. 

developed on the sample with replacement. 
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For the same cut points used before, compute the difference in the mean predicted 2-year 
survival and the corresponding Kaplan-Meier estimates for each group in the original 
sample. 
Compute the differences in the differences between the bootstrap sample and the original 
sample. 
Repeat steps 5 to 14 100-200 times. 
Average the 'double differences' computed in step 14 over the 100-200 bootstrap samples. 
These are the estimates of over-optimism in the apparent error estimates. 
Add these over-optimism estimates to the apparent errors in the original sample to obtain 
bias-corrected estimates of predicted versus observed, that is, to obtain a bias- or overfit- 
ting-corrected calibration curve. 

7. SUMMARY O F  MODELLING STRATEGY 

Assemble accurate, pertinent data and as large a sample as possible. For survival time data, 
follow-up must be sufficient to capture enough events as well as the clinically meaningful 
phases if dealing with a chronic disease. 
Formulate focused clinical hypotheses that lead to specification of relevant candidate 
predictors, the form of expected relationships, and possible interactions. 
Discard observations having missing Y after characterizing whether they are missing 
at random." See reference 62 for a study of imputation of Y when it is not missing at 
random. 
If there are any missing X s ,  analyse factors associated with missingness. If the fraction of 
observations that would be excluded due to missing values is very small, or one of the 
variables that is sometimes missing is of overriding importance, exclude observations with 
missing values". Otherwise impute missing X s  using individual predictive models that take 
into account the reasons for missing, to the extent possible. 

>. If the number of terms fitted or tested in the modelling process (counting non-linear and 
cross-product terms) is too large in comparison with the number of outcomes in the 
sample, use data reduction (ignoring Y)20-23 until the number of remaining free variables 
needing regression coefficients is tolerable. Assessment of likely shrinkage (overfitting) can 
be useful in deciding how much data reduction is adequate. Alternatively, build shrinkage 
into the initial model fitting." 

6. Use the entire sample in the model development as data are too precious to waste. If steps 
listed below are too difficult to repeat for each bootstrap or cross-validation sample, hold 
out test data from all model development steps which follow. 

7. Check linearity assumptions and make transformations in X s  as needed. 
8. Check additivity assumptions and add clinically motivated interaction terms. 
9. Check to see if there are overly-influential  observation^.^' Such observations may indicate 

overfitting, the need for truncating the range of highly skewed variables or making other 
pre-fitting transformations, or the presence of data errors. 

'I For survival time data, no observations should be missing on Y. They should only have curtailed follow-up. 
Alternatively, impute missing values for the predictor but perform secondary analyses later to estimate the strength of 

association between X and Y after deleting observations with that predictor imputed, as imputation will attenuate the 
relationship. 
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10. Check distributional assumptions and choose a different model if needed (in the case of 
Cox models, stratification or time-dependent covariables can be used if proportional 
hazards is violated). 

11. Do limited backwards step-down variable selection.63 Note that since stepwise techniques 
do not really address overfitting and they can result in a loss of information, full model fits 
(that is, leaving all hypothesized variables in the model regardless of P-values) are 
frequently more discriminating than fits after screening predictors for s i g n i f i ~ a n c e . ~ . ~ ~  
They also provide confidence intervals with the proper coverage, unlike models that are 
reduced using a stepwise p r o ~ e d u r e , ~ ~ . ~ ~ .  6 5  fr om which confidence intervals are falsely 
narrow. A compromise would be to test a pre-specified subset of predictors, deleting them if 
their total x2 c 2 x d.f. If the x2 is that small, the subset would likely not improve model 
accuracy. 

12. This is the ‘final’ model. 
13. Validate this model for calibration and discrimination ability, preferably using bootstrap- 

ping. Steps 7 to 11 must be repeated for each bootstrap sample, at least approximately. For 
example, if age was transformed when building the final model, and the transformation was 
suggested by the data using a fit involving age and age2, each bootstrap repetition should 
include both age variables with a possible step-down from the quadratic to the linear 
model based on automatic significance testing at each step. 

14. If doing stepwise variable selection, present a summary table depicting the variability of the 
list of ‘important factors’ selected over the bootstrap samples or cross-validations. This is 
an excellent tool for understanding why data-driven variable selection is inherently 
ambiguous. 

15. Estimate the likely shrinkage of predictions from the model, either using equation (2) or by 
bootstrapping an overall slope correction for the  prediction^.^^ Consider shrinking the 
predictions to make them calibrate better, unless shrinkage was built-in. That way, 
a predicted 0.4 mortality is more likely to validate in a new patient series, instead of finding 
that the actual mortality is only 0.2 because of regression to the mean mortality of 0.1. 

8. SOFTWARE 

Modern statistical software such as S-Plus3’ on UNIX workstations makes it quite feasible to 
perform the extensive calculations required to do the recommended model building steps. The 
first author has written a package of UNIX S-Plus functions called Design66 that allow the 
analyst to perform all analyses mentioned here including tests of linearity, pooled interaction 
tests, model validation and graphical methods for interpreting models. Here are some examples: 

# First find optimum transformations relating each predictor to each 
# other, and use multiple regression in these transformations to 
# impute missing values. Use shrinkage to avoid over-imputing 
trans t transcan( - age + cholesterol + sys. bp + weight, imputed = T, shrink = T) 
cholesterol +- impute(trans, cholesterol) # impute missings 
sys . bp + impute(trans, sys . bp) 
# Fit a Cox P.H. model allowing some interactions with age and 
# nonlinearity in cholesterol and sys . bp using restricted cubic splines 
# x = T, y = T means store data in fit for future bootstrapping 
fit + cph(Surv(fu.time, death) - age * (rcs(cholestero1) + rcs(sys.bp)) + 

anova(fit) 
fastbw(fit) # fast backward step-down 

weight, x = T, y = T, sw = T, t i m 0 . h ~  = 5) 
# automatic pooled Wald tests 
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Table 11. Candidate predictors and d.f. 

Predictor Name Number of Original levels 
parameters 

~~~~~ 

Dose of oestrogen 
Age in years 
Weight index: wt(kg) - ht(cm) + 200 
Performance rating 

History of cardiovascular disease 
Systolic blood pressure/lO 
Diastolic blood pressure/ 10 
Electrocardiogram code 

Serum haemoglobin (g/lOO mi) 
Tumour size (cm2) 
Stage/histologic grade combination 
Serum prostatic acid phosphatase 
Bone metastasis 

placebo, 02, 1.0, 50 mg oestrogen 

normal, in bed <50% of time, in bed 
>SO%, in bed always 

present /absent 

normal, benign, rhythm disturbance, 
block, strain, old myocardial infarct, new 
MI 

present / absent 

# Next validate model, penalizing for backward stepdown variable selectlon 
Vdidatdfit, B = 100, bw = T) 
ccL.librate(fit, B = 100, bw = T, u = 5) # bias-corrected 6-yr survival calibration 
plot(summary(fit)) 
nomogram(fit> 
latex(fit) # typeset model equation 

# bootstrap validation of adzuracy indexes 

# plot hazard ratios with confidence Urnits 
# draw nomogram displaying how model works 

The Design library includes a function rcorr.cens for computing the general c-index, and the 
function va,l.prob which produced Figure 1 and also prints a variety of accuracy measures. For 
binary and ordinal logistic models and for ordinary linear models, Design has a general 
penalized maximum likelihood estimation facility. Design is available in the statlib repository 
(Internet address Lib. stat. cmu. edu). transcan and impute are separate functions in 
statlib which work on UNIX as well as DOS Windows S-Plus. Some other software systems 
which have some intermediate-level capabilities include Stata (Computer Resources Center Inc., 
College Station TX), SPIDA (NHMRC Clinical Trials Centre, Eastwood, NSW Australia), and 
SAS (SAS Institute Inc., Cary NC). 

9. CASESTUDY 

Consider the 506-patient prostate cancer dataset from Byar and Green6’ which has also been 
analysed in references 68 and 69. The data are listed in reference 70, Table 46, and are available by 
Internet at utstat. toronto. edu in the directory /pub/data-collect. These data were from 
a randomized trial comparing four treatments for stage 3 and 4 prostate cancer, with almost equal 
numbers of patients on placebo and each of three doses of oestrogen. Four patients had missing 
values on all of the following variables: wt, pf, hx, sbp, dbp, ekg, hg, bm; two of these 
patients were also missing sz (see Table I1 for abbreviations). These patients will be excluded from 
consideration. 

There are 354 deaths among the 502 patients. If we only wanted to test for a drug effect on 
survival time, a simple rank-based analysis would suffice. To be able to test for differential 
treatment effect or to estimate prognosis or expected absolute treatment benefit for individual 
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patients, however, we need a multivariable survival modeL3 First we consider fitting a full 
additive model which does not assume linearity of effect for any predictor. Categorical predictors 
will be expanded using dummy variables. For pf we could lump the last two categories since the 
last category has only two patients. Likewise, we could combine the last two levels of ekg. 
Continuous predictors will be expanded by fitting 4-knot restricted cubic spline functions, which 
contain two non-linear terms and thus have a total of 3 d.f. Table I1 defines the candidate 
predictors and lists their d.f. The variable stage is not listed as it can be predicted with high 
accuracy from sz, sg, ap, bm (stage could have been used as a predictor for imputing missing 
values on sz, sg). 

There are a total of 36 candidate d.f. which should not be artificially reduced by ‘univariable 
screening’ or graphical assessments of association with death. This is about &j as many predictor 
d.f. as there are deaths, so there is some hope that a fitted model may validate. Let us also examine 
this issue by estimating the amount of shrinkage using equation (2). We use a Cox proportional 
hazards model for time until death. The UNIX S-Plus Design library fits the full model using 
restricted cubic spline expansions and makes use of Therneau’s survival4 package in statlib” 
to perform the calculations. First we invoke the transcan function and impute functions (from 
statlib for any versions of S-Plus) to develop customized non-linear imputation equations for all 
predictors and to apply these equations to impute missing values. 

# Define function for easy determination of whether a value is in a list 
‘%in% +- function (a, b) match (a, b, nomatch = 0) > 0 

levels(ekg) [levels(ekg) %in% c(’o1d MI’,’recent MI’)] +- ’MI’ 
# combines last 2 levels and uses a new name, MI 

pf.coded + as.integer(pf) # save origind pf, re-code to 1-4 
levels(pf) + c(levels(pf) [ 1 : 31, levels(pf) [3]) # combine last 2 levels of originaJ 
w 

sz + impute(w,sz) # we8 imputation rule w 
sg + -Puww, sf3 
age + impute(w, age) 
wt e impute(w,wt) 
ekg + impute(w, ekg) 

dd + datadist(rx, age, wt, pf, pf.coded, heart, map, hg, 82, sg, ap, bm) 
options(datadist = ’dd’) 

units(dtime) + ’Month’ 
S t Surv(dtime, sbtusl= ’alive’) 

f t cph(S - rx + rcs(age,4) + rcs(wt,4) + pf + hx + 
rcs(sbp,4) + rcs(dbp,4) + ekg + rcs(hg,4) + 
rcs(sg,4) + rcs(sz,4) + rcs(ap,4) + bm) 

+ transcan<- sz + sg + ap + sbp + dbp + age + wt + hg + 
ekg + pf + bm + hx, imputed = T, impcat = ’tree’) 

# d a W s t  stores characteristlcs of raw data 

The likelihood ratio x2 statistic is 140 with 36 d.f. This test is highly significant so some modelling 
is warranted. The AIC value (on the x2 scale) is 140 - 2 x 36 = 68. The rough shrinkage estimate 
is 0.743 (104/140) so we estimate that 26% of the model fitting will be noise, especially with regard 
to calibration accuracy. The approach of reference 2 is to fit this full model and to shrink 
predicted values. We will instead try to do data reduction (blinded to individual x2 statistics 
from the above model fit) to see if a reliable model can be obtained without shrinkage. A 
good approach at this point might be to perform a variable clustering analysis which for our 
purposes we will do  informally. The data reduction strategy is listed in Table 111. For ap, more 
exploration is desired to be able to model the shape of effect with such a highly skewed 
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Table 111. Data reduction strategy (blinded to Y) 

Variables Reductions d.f. saved 

wt 

Pf Assume linearity 
hx, ehg 

Assume variable not important enough for 4 knots 
Use 3 knots 

Make new 0,1,2 variable and assume linearity: 
2 = hx and ekg not normal and benign, 
1 = either, 0 = none 
Combine into mean arterial bp and use 3 knots: 
map = + dpb + f spb 

sbp, dbp 

sg Use 3 knots 
82 Use 3 knots 
aP Look at shape of effect of ap in detail, - 

and take log before expanding in spline to achieve 
numerical stability: add 2 knots 

1 

1 
5 

4 

1 
1 

-2  

distribution. Since we expect the tumour variables to be strong prognostic factors we will retain 
them as separate variables. No assumption will be made for the dose-response shape for 
oestrogen, as there was reason to expect a non-monotonic effect due to competing risks for 
cardiovascular death. 

heart + hx + I (ekg %in% c('normal','benign')) 
label(heart) + 'Heart Disease Code' 
map + (2rdbp + sbp)/3 
IabeKmap) + 'Mean Arterial Pressure/ 10' 

f + cph(S - rx + rcs(age,4) + rcs(wt,3) t pf.coded + 
heart + rcs(map,3) + rcs(hg,4) + 

x = T, y = T, BW = T, time. inc = 5 * 12) 
rCS(Sg,3) + I'CS(S2,3) + rcs(log(ap),d) + bm, 

# x, y for predict, validate, calibrate; BUPV, time. inc for calibrate 

The total savings is thus 11 d.f. The likelihood ratio x2 is 126 with 25 f . ,  with a ! ighi Y 
improved AIC of 76. The rough shrinkage estimate is slightly better at 080, but still worrisome. 
A further data reduction might be achieved by using the transcan transformations determined 
from self-consistency of predictors, but we will stop here and use this model. 

Now assess this model in more detail by examining coeflicients and summarizing multiple 
parameters within predictors using Wald statistics. 

f 

Cox Proportional Hazards Model 

cph<formula = S - IX + rcscage, 4) + rcscwt, 3) + pf.coded + heart + rcs(map, 3) + 

# writing an object name in 8 causes it to be printed 

rca(hg, 4) + W<SZ,  3) t rcscsg, 3) + rcs(log(ap), 6) + bm, 
x = T, y = T, BW = T, time.inc = 6 +  12) 

Obs Events Model L.R. d.f. P Score Score P R 2  
502 354 126 26 0 136 0 0.221 

coef se(coen z P 
rx = 02mg estrogen 3.740 - 03 1.500 - 01 0.0260 9.800 - 01 
rx = 1.Omg estrogen -4.210 - 01 1.660 - 01 -2.6427 1,100 - 02 
rx = 8.Omg estrogen -9736 - 02 1.580 - 01 -06176 537e - 01 

age -1.170-02 2.350-02 -0.4996 6.17e-01 
age' 2-000 - 02 8-868 - 02 0'5190 0.040 - 01 
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age” 
wt 
wt’ 

pf . coded 
heart 
map 
map’ 
hB 
hg‘ 

hg” 

sz’ 
sg 

sg’ 
aP 

aP’ 
ap’ ’ 

ap’ ’ ’ 
,P”” 

bm 

8Z 

2.7le - 01 
-2.46e - 02 

1.848 - 02 
2.28e - 01 
4.18e - 01 
3.24e - 02 

-4437e - 02 
- 1B6e - 01 

7.42e - 02 
8.08e - 01 
1.00e - 02 
879e - 03 
7.19e - 02 

-7.04e - 03 
-F96e - 01 

4.89e + 01 
-3.64e + 02 

4.04e + 02 
-9.69e + 01 

328e - 02 

498e - 01 
9.398 - 03 
1.12e - 02 
1.21~3 - 01 
8.08e - 02 
8.498 - 02 
9.41~1- 02 
7.68e - 02 
2.10e - 01 
1.27e + 00 
1.44e - 02 
2.37e - 02 
7.86e - 02 
9.83~1- 02 
3 l l e - 0 1  
2.18e + 01 
1.89e + 02 
1.78e + 02 
4.16e + 01 
1.81e - 01 

0.8482 

1.6379 
1.8628 
8.1 723 
0.38 1 7 

-2.6178 

-0.4887 
-2.0343 

0.3830 
0.40 14 
0.6988 
0.37 18 
0.9 138 

-0.07 16 
-2.8884 

2.2482 

23087 
- 2.33 1 1 

0.1790 

-2.2909 

8.84e - 0 1  
8.86e - 03 
1.01e - 01  
628e - 02 
2.31~1- 07 
7.03e - 01  
6.27e - 0 1  
4.19~1- 02 
7.24e - 0 1  
688e - 0 1  
4.87e - 0 1  
7.10e - 0 1  
3.61e - 0 1  
9.43e - 0 1  
1.05e - 02 
2.46e - 02 
2.20e - 02 
2.1 le  - 02 
197e - 02 
8.88e - 0 1  

# The terms with ’, ”, etc. after the name are cubic spline nonllnear terms 
# The dose effect is apparently nonllnear. 

anova(f ) # output waa actua3I.y typesetted automatkally wing latex(anova(f)) 
# latex requires the print.display package from statlib 

There are 12 parameters associated with non-linear effects, and the overall test of linearity 
indicates the strong presence of non-linearity for at least one of the variables 
age, wt, map, hg, 82, sg, ap (see Table IV). There is a difference in survival time between at 
least two of the doses of oestrogen. 

Now that we have a tentative model, let us examine the model’s distributional assumptions. As 
mentioned in Section 4.3, the Schoenfeld partial residuals are an effective tool for checking the 
proportional hazards assumption in the Cox model. Grambsch and T h e r n e a ~ ’ ~  have modified 
these residuals so that smoothed plots of them estimate the effect of predictors on the log 
instantaneous hazard rate as a function of follow-up time. Their scaled residuals estimate B(t), the 
regression coefficient as a function of time. A messy detail is how to handle multiple regression 
coefficients per predictor. Here we do an approximate analysis in which each predictor is scored 
by adding up all the terms in the model to transform that predictor to be optimally related to the 
log hazard (at least if the shape of the effect does not change with time). In doing this we are 
temporarily ignoring the fact that the individual regression coefficients were estimated from the 
data. For dose of oestrogen, for example, we code the effect as 0 (placebo), 0.0037 (0*2mg), 
-0.421 (1.0 mg), and -0.0973 (5.0 mg), and age is transformed as -0.0117 age + 0.02 age’ 
+ 0-271 age”, which in most simple form is 

- 1.17 x 10-2age + 3.48 x 10- ’(age - 56): + 4.71 x lO-*(age - 71): 

where (x) + means to ignore that term if x < 0, and the knots for age are 56,71,75 and 80 years. 
In S-Plus the predict function easily summarizes multiple terms and produces a matrix (here, 

z) containing the total effects for each predictor. Matrix factors can easily be included in model 
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Table IV. Wald statistics for S 

x 2  d.f. P 

rx 
age 

wt 

pf. coded 
heart 
map 

hg 

Non-linear 

Non-linear 

Non-linear 

Non-linear 

Non-linear 

Non-linear 

Non-linear 

sz 

sg 

aP 

bm 

TOTAL 
TOTAL NON-LINEAR 

8.38 
12.85 
8.18 
8.87 
2.68 
3.47 

26.75 
0.25 
0.24 

11.85 
6.92 

10.60 
0.14 
3.14 
0.01 

13.17 
12.93 
0.03 

30.28 
128.08 

3 
3 
2 
2 
1 
1 
1 
2 
1 
3 
2 
2 
1 
2 
1 
5 
4 
1 

12 
25 

0.0387 
0.0050 
0.0168 
00118 
01014 
0.0625 

<O.OOol 
043803 
0.6272 
0.0079 
0.03 14 
0.0050 
0.7102 
0.2082 
0.9429 
0.0218 
0.01 16 
0.8579 
04025 

<OOOO1 

formulae. 

z t predic-(f, type = ’terms’) # required x = T above to store cdsign 
# matrix 

f .  short + cph(S - z, x = T, y = T) # store x, y so can get residuals 
The fit f.short based on the matrix z of single d.f. predictors has the same LR xz of 126 as the fit 
f, but with a falsely low 11 d.f. All regression coefficients are unity. 

Now get scaled Schoenfeld residuals separately for each predictor and test the proportional 
hazards assumption for each using the ‘correlation with time’ test. Also plot smoothed trends in 
the residuals. The plot method for cox. zph objects uses restricted cubic splines to smooth the 
relationship. 

phtest + cox. zph(f . short, transform = ’identity’) 
phtest 

rho chisq P 
r~ 0.12965 6.8481 0.0 108 

age -0.08911 2.8518 0.09 13 
wt -0.00878 0.0269 0.8697 

pf. Coded -0.06238 1.4278 0.232 1 
heart 0*01017 0.0451 0.83 19 
map 0.03928 0.4998 0.4796 
hg -0.06678 1.7368 0.1876 
SZ -0.08262 09834 0.32 14 
Sg -0.04276 0.6474 0.42 10 
ap 0.01237 0.0858 0.8 133 
bm 0.04891 0.9241 0.3364 

GLOBAL NA 18.3776 0.1659 
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Figure 2. Raw and spline-smoothed scaled Schoenfeld residuals for dose of oestrogen, non-linearly coded from the Cox 
model fit, with 2 standard  error^.'^ 

Only the drug effect significantly changes over time (P = 0.01 for testing the correlation rho 
between the scaled Schoenfeld residual and time), but when a global test of PH is done penalizing 
for 11 d.f., the P-value is 0.17. A graphical examination of the trends does not find anything 
interesting for the last 10 variables. A residual plot is drawn for rx alone and is shown in Figure 2. 

plot(phtest, var = 'rx') 

We will ignore the possible increase in effect of oestrogen over time. If this non-PH is real, 
a more accurate model might be obtained by stratifying on rx or by using a time x rx interaction 
as a time-dependent covariable. 

Note that the model has several insignificant predictors. These will not be deleted, as that 
would not improve predictive accuracy and it would make confidence intervals for a or for 
predicted survival probabilities with the correct coverage probabilities hard to obtain.64 At this 
point it would be reasonable to test pre-specified interactions. Here we will test all interactions 
with dose. Since the multiple terms for many of the predictors (and for rx) make for a great 
number of d.f. for testing interaction (and a loss of power), we will do approximate tests on the 
data-driven codings of predictors. P-values for these tests are likely to be somewhat anti- 
conservative. 

z.dose +- z[,'rx'] # same aa s ~ z [ , l ]  - get first column 
a .  other + z [,-1] # aJl but the first column of z 
f.ia + cph(8 - z.dose * z.other) 
anova(f . ia) 

Factor Chi-square d.f. P 

z . other (Factor + Hlgher Order Factors) 134.3 20 0~000 

z.dose (Factor + Higher Order Factors) 189 11 0.082 
All Interactions 12.2 10 0.2'73 

All Interactions 12.2 10 0.2'73 
z . dose z. other (Factor + Higher Order Factors) 12.2 10 0.2'73 
TOTAL 137.3 21 0.000 
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Figure 3. Shape of each predictor on log hazard of death. Y-axis shows A’s, but the predictors not plotted are set to 
reference values. ‘Rug plots’ on the top of each graph show the data density of the predictor. Note the highly 
non-monotonic relationship with ap, and the increased slope after age 70 which has been found in outcome models for 

various diseases 

Here ‘Factor + Higher Order Factors’ means the combined main effect and interaction effect. 
The global test of additivity has P = 0.27, so we will ignore the interactions (and also forget to 
penalize for having looked for them below!). 

The following UNIX S-Plus statements plot how each predictor is related to the log hazard of 
death, along with 0.95 confidence bands. Note that due to a peculiarity of the Cox model the 
standard error of the predicted X p  is zero at the reference values (medians here, for continuous 
predictors). 

pm(mfrow = ~(3,411 
r + c ( - l ,  1) 
plot (f, r~ = NA, 
plot (f, age = NA, 
scat 1 d(age> 
plot(f, wt = NA, 

# 4 x 3 matrix of graph  
# use common y-exis range for all 
ylim = r) 
ylim = r) 

ylim = r) 

NA +use default range for predidor 

# scatld from statlib, for any S-Plus 
# scatld shows data density 

. . .  
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Figure 4. Bootstrap estimate of calibration accuracy for 5-year estimates from the final Cox model. Dots correspond to 
apparent predictive accuracy. x marks the bootstrapcorrected estimates 

We first validate this model for Somers’ D,, rank correlation between predicted log hazard and 
observed survival time, and for slope shrinkage. The bootstrap is used (with 200 re-samples) to 
penalize for possible overfitting, as discussed in Section 6. 

validata(f, B = 200, = T, pr = T) 

index. orig training test optimism index. n 
corrected 

DXy -0.337377 -0‘384844 -0.30978 -0.03488 -0.28230 200 
R2 0.221444 0.281369 0.18446 0.0769 1 0-14453 200 
Slope 1 .OOOOOO 1 .OOOOOO 0,78484 0.2 1638 0.78464 200 

Here ‘training’ refers to accuracy when evaluated on the bootstrap sample used to fit the model, 
and ‘test’ refers to the accuracy when this model is applied without modification to the original 
sample. The apparent D,, is -0.34, but a better estimate of how well the model will discriminate 
prognoses in the future is D,, = - 0.28. The bootstrap estimate of slope shrinkage is 0.78, 
surprisingly close to the simple heuristic estimate. The shrinkage coefficient could easily be used 
to shrink predictions to yield better calibration. 

Finally, we validate the model (without using the shrinkage coefficient) for calibration accuracy 
in predicting the probability of surviving 5 years. As detailed in Section 5, the bootstrap is used to 
estimate the optimism in how well predicted 5-year survival from the final Cox model tracks 
Kaplan-Meier 5-year estimates, stratifying by grouping patients in subsets with about 70 patients 
per interval of predicted 5-year survival. 

plot(ca,librate(f, B = 200, u = 6 * 12, m = 70)) 

The estimated calibration curves are shown in Figure 4. Bias-corrected calibration is very good 
except for the two groups with extremely bad prognosis - their survival is slightly better than 
predicted, consistent with regression to the mean. Even there, the absolute error is low despite a large 
relative error. Hence for this example it may not be worthwhile to develop a model using shrinkage. 

Now compare this analysis with three previous analyses of this dataset. In all three analyses, all 
continuous covariables were arbitrarily categorized into intervals and scored with somewhat 
arbitrary category codes. In none of the three were sbp, dbp, ekg, ap, bm considered. Patients 
having missing values on any of the candidate predictors were excluded from consideration. 
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Turn first to Byar and Green,67 who used an exponential survival model and dichotomized 
treatment by combining placebo and low dose and combining the two highest doses. The 
important predictors were found to be hx, sg, sz, hg, and the following interactions were 
detected in an exploratory analysis which did not control for multiple comparisons: rx x sg and 
IX x age. These interactions were not significant in the present model (even if dose were rexoded 
as in Byar and Green). 

Kay6’ considered Cox models for various causes of death. For time until all-cause mortality, 
Kay found that the most important predictors were 82, hx, sg, age. The treatment along with 
age, hx were significant predictors of cardiovascular death. The treatment (in the opposite 
direction), and hg, sz, sg predicted cancer death. Treatment and age, w t  predicted time until 
death from other causes. 

Sauerbrei and SchurnacheP9 also used a Cox model and an approach in which a backward 
elimination procedure was done for each of 100 bootstrap samples. The relative frequency of 
selection of variables as ‘important’ was used as the criterion for inclusion of variables in the final 
model. Variables were retained if they were selected 2 70 times. All candidate predictors met this 
criterion. Treatment interactions involving age and sg were the most common interactions (56 
and 48 bootstrap repetitions, respectively), but they did not meet the criterion for selection. The 
authors noted that these interactions were misleadingly more significant in a model which only 
adjusted for ‘significant’ predictors instead of all candidate predictors. 

None of the three references just cited provided a model validation or quantified the predictive 
discrimination of the final model. 

10. SUMMARY 

Methods were described for developing clinical multivariable prognostic models and for assessing 
their calibration and discrimination. A detailed examination of model assumptions and an 
unbiased assessment of predictive accuracy will uncover problems that may make clinical 
prediction models misleading or invalid. The modelling strategy presented in Section 7 provides 
one sequence of steps for avoiding the pitfalls of multivariable modelling so that its many 
advantages can be realized. 
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