


Small
Clinical

Trials
Issues and Challenges

Charles H. Evans, Jr., and Suzanne T. Ildstad, Editors

Committee on Strategies for Small-Number-Participant
Clinical Research Trials

Board on Health Sciences Policy

INSTITUTE OF MEDICINE

NATIONAL ACADEMY PRESS
Washington, D.C.



NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, N.W. • Washington, DC 20418

NOTICE: The project that is the subject of this report was approved by the Governing
Board of the National Research Council, whose members are drawn from the councils of
the National Academy of Sciences, the National Academy of Engineering, and the Insti-
tute of Medicine. The members of the committee responsible for the report were chosen
for their special competences and with regard for appropriate balance.

Support for this project was provided by the National Aeronautics and Space Adminis-
tration. The views presented in this report are those of the Institute of Medicine Commit-
tee on Strategies for Small-Number-Participant Clinical Research Trials and are not nec-
essarily those of the funding agency.

International Standard Book Number 0-309-07333-2

Additional copies of this report are available from the National Academy Press, 2101
Constitution Avenue, N.W., Box 285, Washington, D.C. 20055. Call (800) 624-6242 or
(202) 334-3313 (in the Washington metropolitan area), or visit the NAP’s home page at
www.nap.edu. The full text of this report is available at books.nap.edu/catalog/
10078.html.

For more information about the Institute of Medicine, visit the IOM home page at:
www.iom.edu.

Copyright 2001 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America.

The serpent has been a symbol of long life, healing, and knowledge among almost all
cultures and religions since the beginning of recorded history. The serpent adopted as a
logotype by the Institute of Medicine is a relief carving from ancient Greece, now held by
the Staatliche Museen in Berlin.



Shaping the Future for Health

“Knowing is not enough; we must apply.
Willing is not enough; we must do.”
                                                   —Goethe

INSTITUTE OF MEDICINE



The National Academy of Sciences is a private, nonprofit, self-perpetuating society of
distinguished scholars engaged in scientific and engineering research, dedicated to the
furtherance of science and technology and to their use for the general welfare. Upon the
authority of the charter granted to it by the Congress in 1863, the Academy has a man-
date that requires it to advise the federal government on scientific and technical matters.
Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the
National Academy of Sciences, as a parallel organization of outstanding engineers. It is
autonomous in its administration and in the selection of its members, sharing with the
National Academy of Sciences the responsibility for advising the federal government.
The National Academy of Engineering also sponsors engineering programs aimed at
meeting national needs, encourages education and research, and recognizes the superior
achievements of engineers. Dr. William A. Wulf is president of the National Academy of
Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences
to secure the services of eminent members of appropriate professions in the examination
of policy matters pertaining to the health of the public. The Institute acts under the
responsibility given to the National Academy of Sciences by its congressional charter to
be an adviser to the federal government and, upon its own initiative, to identify issues of
medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute
of Medicine.

The National Research Council was organized by the National Academy of Sciences in
1916 to associate the broad community of science and technology with the Academy’s
purposes of furthering knowledge and advising the federal government. Functioning in
accordance with general policies determined by the Academy, the Council has become
the principal operating agency of both the National Academy of Sciences and the Na-
tional Academy of Engineering in providing services to the government, the public, and
the scientific and engineering communities. The Council is administered jointly by both
Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. William A. Wulf
are chairman and vice chairman, respectively, of the National Research Council.

National Academy of Sciences
National Academy of Engineering
Institute of Medicine
National Research Council



COMMITTEE ON STRATEGIES FOR SMALL-NUMBER-
PARTICIPANT CLINICAL RESEARCH TRIALS

SUZANNE T. ILDSTAD (Chair), Director, Institute for Cellular
Therapeutics, University of Louisville

ROBERT M. CENTOR, Associate Dean and Director, Division of General
Internal Medicine, University of Alabama

ED DAVIS, Professor and Chair, Department of Biostatistics, University of
North Carolina School of Public Health, Chapel Hill

BRUCE LEVIN, Professor and Chairman, Division of Biostatistics, The
Joseph L. Mailman School of Public Health, Columbia University, New
York City

EDWARD D. MILLER, Dean and Chief Executive Officer, The Johns
Hopkins University School of Medicine, Baltimore

INGRAM OLKIN, Professor of Statistics and Education, Stanford
University, Stanford, CA

DAVID J. TOLLERUD, Professor of Public Health and Director, Center for
Environmental and Occupational Health, MCP Hahnemann University
School of Public Health, Philadelphia

PETER TUGWELL, Chair, Department of Medicine, University of Ottawa,
Ottawa, Canada

Institute of Medicine Board on
Health Sciences Policy Liaison

ROBERT D. GIBBONS, Professor of Biostatistics and Director, Center for
Health Statistics, University of Illinois at Chicago

Study Staff

CHARLES H. EVANS, JR., Study Director and Senior Adviser, Biomedical
and Clinical Research

VERONICA A. SCHREIBER, Research Assistant
TANYA LEE, Project Assistant

Institute of Medicine Staff

ANDREW POPE, Director, Board on Health Sciences Policy
ALDEN CHANG, Administrative Assistant
CARLOS GABRIEL, Financial Associate

Consultant

KATHI E. HANNA

Copy Editor

MICHAEL K. HAYES

v





vii

Reviewers

The report was reviewed by individuals chosen for their diverse per-
spectives and technical expertise in accordance with procedures ap-
proved by the National Research Council’s Report Review Commit-

tee. The purpose of this independent review is to provide candid and critical
comments to assist the authors and the Institute of Medicine in making the
published report as sound as possible and to ensure that the report meets
institutional standards for objectivity, evidence, and responsiveness to the
study charge. The content of the review comments and the draft manuscript
remain confidential to protect the integrity of the deliberative process. The
committee wishes to thank the following individuals for their participation
in the report review process:

GREGORY CAMPBELL, Director, Division of Biostatistics, Center for
Devices and Radiological Health, Food and Drug Administration,
Rockville, Maryland

JOSEPH T. COYLE, Chairman, Department of Psychiatry, Harvard Medical
School, Boston

NANCY NEVELOFF DUBLER, Director, Division of Bioethics, Montefiore
Medical Center, The Albert Einstein College of Medicine, Bronx,
New York



viii REVIEWERS

LAWRENCE M. FRIEDMAN, Director, Division of Epidemiology and
Clinical Applications, National Heart, Lung, and Blood Institute,
Bethesda, Maryland

STEVEN N. GOODMAN, Associate Professor, Biostatistics and Medicine,
Johns Hopkins University School of Medicine, Baltimore, Maryland

RODERICK LITTLE, Chair, Department of Biostatistics University of
Michigan School of Public Health, Ann Arbor, Michigan

DAVID MELTZER, Assistant Professor, Section General Internal Medicine,
University of Chicago, Chicago, Illinois

JANE W. NEWBURGER, Director Clinical Research, Children’s Hospital,
Harvard University, Boston, Massachusetts

RICHARD L. SIMMONS, Medical Director, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania

SCOTT L. ZEGER, Chair, Department of Biostatistics, Johns Hopkins
University School of Public Health, Baltimore, Maryland

Although the reviewers listed above have provided many constructive
comments and suggestions, they were not asked to endorse the conclusions
or recommendations nor did they see the final draft of the report before its
release. The review of this report was overseen by Joseph T. Coyle, M.D.,
Chair, Consolidated Department of Psychiatry, Harvard Medical School,
Belmont, Massachusetts, who was responsible for making certain that an
independent examination of this report was carried out in accordance with
institutional procedures and that all review comments were carefully consid-
ered. Responsibility for the final content of this report rests entirely with the
editors.



Preface

ix

The design and conduct of any type of clinical trial requires three con-
siderations: first, the study should examine valuable and important
biomedical research questions; second, it must be based on a rigorous

methodology that can answer a specific research question being asked; and
third, it must be based on a set of ethical considerations, adherence to which
minimizes risks to individuals. Whenever possible standard trial designs
should be used in clinical trials. Moreover, investigators should strive to de-
sign clinical trials that contain adequate statistical power. However, there are
times when the number of experimental subjects is unavoidably small. For
example, the rapid progress that is occurring in a variety of areas of science
(e.g. biotechnology, organ transplantation, gene therapy, cellular therapies,
bioartificial organs, and designer genes tailored to an individual) has re-
sulted in the need for clinical trials with small numbers of participants and
new approaches to optimization of the design and analysis of clinical trials
when the number of experimental participants (the sample size) in unavoid-
ably small. Clinical trials with small numbers of participants, however, must
address broad sets of issues different from those that must be addressed in
trials with large numbers of participants. It is in those circumstances of trials
with small sample sizes that approaches to optimization of the study design
and data interpretation pose greater challenges.
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Clinical trials involving astronauts share characteristics with clinical tri-
als of the new technologies mentioned above, as astronauts comprise a popu-
lation with small numbers of subjects, and many variables that affect this
group during space travel cannot be controlled on Earth. However, inter-
ventions that prevent potentially life-threatening conditions such as acceler-
ated bone mineral density loss on long space missions must be explored if
long missions in space are to be successful. Therefore, the National Aero-
nautics and Space Administration (NASA) asked the Institute of Medicine
(IOM) to convene a panel of experts to recommend optimal approaches to
the design, implementation, and evaluation of outcomes in clinical trials with
small numbers of participants. NASA commissioned this fast-track study
because the opportunity to plan for the next clinical trial during a space
mission was rapidly approaching and important questions needed to be an-
swered.

A group of experts in statistics, clinical research study design, epidemi-
ology, and pharmacology made a major effort to prepare what I believe will
be a widely useful report. Robert Gibbons, a biostatistician and liaison from
the IOM Board on Health Sciences Policy, participated throughout the study
as a full committee member. A centerpiece of the committee’s activity was an
invitational workshop. Experts from the United States and Canada spent a
full day providing additional information and expertise to the committee
during the invitational workshop discussing future directions for small clini-
cal trials with small numbers of participants. Their efforts were particularly
important in helping the committee prepare this report. After careful con-
sideration the committee developed recommendations for approaching the
issues and challenges inherent in clinical trials with small sample sizes. More-
over, the design and implementation of future research in this newly devel-
oping area of clinical investigation will improve the ability of investigators to
evaluate outcomes efficiently and in a cost-effective manner to allow ad-
vances in medicine to be available to patients with life-threatening diseases
in an efficient manner.

Finally, the IOM staff, led by Charles Evans, contributed significantly to
the final outcome. We owe a tremendous gratitude to Kathi Hanna, a highly
skilled science writer, and to Veronica Schreiber, the research assistant on
the project, for their untiring efforts and assistance to the committee
throughout all phases of the study.

Suzanne T. Ildstad
Committee Chair
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Executive Summary

ABSTRACT

Scientific research has a long history of using well-established, well docu-
mented, and validated methods for the design, conduct, and analysis of clinical
trials. A study design that is considered appropriate includes sufficient sample
size (n) and statistical power and proper control of bias to allow a meaningful
interpretation of the results. Whenever feasible, clinical trials should be de-
signed and performed so that they have adequate statistical power. However,
when the clinical context does not provide a sufficient number of research
participants for a trial with adequate statistical power but the research ques-
tion has great clinical significance, research can still proceed under certain con-
ditions. Small clinical trials might be warranted for the study of rare diseases,
unique study populations (e.g., astronauts), individually tailored therapies, in
environments that are isolated, in emergency situations, and in instances of
public health urgency. Properly designed trials with small sample sizes may
provide substantial evidence of efficacy and are especially appropriate in par-
ticular situations. However, the conclusions derived from such studies may
require careful consideration of the assumptions and inferences, given the small
number of paticipants.

Bearing in mind the statistical power, precision, and validity limitations of
trials with small sample sizes, there are innovative design and analysis ap-
proaches that can improve the quality of such trials. A number of trial designs
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especially lend themselves to use in studies with small sample sizes, including
one subject (n-of-1) designs, sequential designs, “within-subject” designs, deci-
sion analysis-based designs, ranking and selection designs, adaptive designs,
and risk-based allocation designs. Data analysis for trials with small numbers
of participants in particular must be focused. In general, certain types of analy-
ses are more amenable to studies with small numbers of participants, including
sequential analysis, hierarchical analysis, Bayesian analysis, decision analysis,
statistical prediction, meta-analysis, and risk-based allocation.

Because of the constraints of conducting research with small sample sizes,
the committee makes recommendations in several areas: defining the research
question, tailoring the study design by giving careful consideration to alterna-
tive methods, clarifying sample characteristics and methods for the reporting of
results of clinical trials with small sample sizes, performing corroborative analy-
ses to evaluate the consistency and robustness of the results of clinical trials
with small sample sizes, and exercising caution in the interpretation of the
results before attempting to extrapolate or generalize the findings of clinical
trials with small sample sizes. The committee also recommends that more re-
search be conducted on the development and evaluation of alternative experi-
mental designs and analysis methods for trials with small sample sizes.

INTRODUCTION

Clinical trials are used to elucidate the most appropriate preventive,
diagnostic, or treatment options for individuals with a given medical condi-
tion. Perhaps the most essential feature of a clinical trial is that it aims to use
results based on a limited sample of research participants to see if the inter-
vention is safe and effective or if it is comparable to a comparison treatment.
Sample size is a crucial component of any clinical trial. A trial with a small
number of research participants is more prone to variability and carries a
considerable risk of failing to demonstrate the effectiveness of a given inter-
vention when one really is present. This may occur in phase I (safety and
pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive as-
sessment of safety and efficacy) trials. Although phase I and II studies may
have smaller sample sizes, they usually have adequate statistical power, which
is the committee’s definition of a “large” trial. Sometimes a trial with eight
participants may have adequate statistical power, statistical power being the
probability of rejecting the null hypothesis when the hypothesis is false.

Thus, a critical aspect of clinical trial design is determination of the
sample size needed to establish the feasibility of the study (i.e., sufficient
statistical power). The number of participants in a clinical trial should al-
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ways be large enough to provide a sufficiently precise answer to the research
question posed, but it should also be the minimum necessary to achieve this
aim. A proposed study that cannot answer the question being asked because
the necessary sample size cannot be attained should not be conducted on
ethical grounds. That is, it is unacceptable to expose patients or research
participants to harms even inconveniences if there is no prospect that useful
and potentially generalizable information will result from the study.

Adequately powered randomized clinical trials and double-blind, ran-
domized clinical trials are generally regarded as the most authoritative re-
search methods for establishment of the efficacies of therapeutic interven-
tions. By allocating sufficient numbers of individuals to groups (e.g.,
experimental or control groups), investigators can estimate or determine
with some degree of certainty the effect of a given intervention.

Nevertheless, even though the size of the available research population
does not allow a randomized clinical trial with adequate statistical power to
be conducted, there might still be a need to design and perform the research
(e.g., because treatments are unavailable for a rare disorder or a unique pa-
tient population or because studies require the participation of patients with
terminal or severely debilitating or incapacitating disorders). In addition,
some distinctive research populations—such as astronauts or members of a
small, isolated community—may consist of less than five individuals. This
research situation, in which large numbers of study participants cannot be
obtained, is defined as a “small n clinical trial,” where n refers to the sample
size. The sample size in small clinical trials might be very small, for example,
a group of astronauts during a space mission, or could range upward to
more than 100 individuals. This is in contrast to the sample sizes of some
large clinical trials, where the number of participants is in the thousands.
This report focuses on the issues and challenges presented by clinical trials
with very small sample sizes.

Because of the design and analysis constraints of small-sample-size trials
and because of their inherent uncertainties, they require at least as much—
and probably more—thought and planning than traditional large clinical
trials. Small-sample-size studies may also require additional methods for
evaluation of the effectiveness of a therapeutic intervention. In addition,
inferences should consider the size of the population relative to the size of
the sample. For example, in some trials with small sample sizes, the size of
the potential population might be large (e.g., phase II studies of treatments
for cancer). In other cases, the sample size is necessarily small by virtue of
the limited available population (e.g., astronauts). Designs focused on indi-
vidual effects, such as n-of-1 studies seem more appropriate when the avail-
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able population is limited than when the size of the potential population is
large. Sampling of small populations is a problem in its own right and is
distinct from the problem of making inferences (extrapolations) from the
results of studies with small sample sizes. A threshold question, however, is
whether the scientific bases of alternative and emerging methods, such as
decision analysis or statistical prediction, alone or in combination, are suffi-
ciently developed to demonstrate the efficacy or effectiveness of a therapeu-
tic intervention in a small clinical trial.

New approaches to protocol design are needed for studies with small
sample sizes that can assess the potential therapeutic efficacies of drugs,
biologics, devices, and other medical interventions. The rapid progress that
is being made in a variety of areas (e.g., biotechnology, organ transplanta-
tion, gene therapy, cell and tissue engineering and therapies, biologically
based artificial organs, designer drugs, and space travel) highlights the need
to evaluate the effects of experimental interventions so that the benefits that
arise from these advances can be made available safely and expeditiously.

CHARGE TO THE COMMITTEE AND PLAN OF ACTION

The Institute of Medicine, at the request of the National Aeronautics
and Space Administration, asked a committee of experts to assess the cur-
rent methodologies and the appropriate situations for the conduct of clini-
cal trials with small sample sizes. The charge included a request to assess the
published literature on various strategies such as (1) meta-analysis to com-
bine disparate information from several studies including Bayesian tech-
niques as in the confidence profile method and (2) other alternatives such as
assessing therapeutic results in a single treated population (e.g., astronauts)
by sequentially measuring whether the intervention is falling above or below
a preestablished probability outcome range and meeting predesigned speci-
fications as opposed to incremental improvement.

A committee of nine members comprising experts with knowledge in
biostatistics, clinical pharmacology, clinical research, ethics, and research
design methods reviewed the scientific literature relevant to clinical trials
with small sample sizes and held three meetings, including an invitational
conference on future directions in clinical trials with small sample sizes. Con-
ference participants consisted of individuals from federal research and regu-
latory agencies, industry, academia, and other areas of clinical research and
practice. They were asked to provide information and perspective on the
progress in developing strategies for the design, conduct, and evaluation of
clinical trials with small sample sizes.
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FINDINGS

• Scientific research has a long history of using well-established, docu-
mented, and validated methods for the design, conduct, and analysis of clini-
cal trials (Box 1).

• A study design that is considered appropriate includes one with a
sufficient sample size and statistical power and proper control of bias to
allow a meaningful interpretation of the results.

The committee strongly reaffirms that, whenever feasible, clinical tri-
als should be designed and performed so that they have adequate
statistical power.

• However, when the clinical context does not provide a sufficient num-
ber of research participants for a trial with an adequate statistical power but
the research question has great clinical significance, research can still pro-
ceed under certain conditions.

• Properly designed trials with small sample sizes can contribute to
substantial evidence of efficacy and are especially appropriate in particular
situations (Box 2). However, the conclusions derived from such studies may
require careful consideration of the assumptions and inferences, given the

BOX 1
Important Concepts in Clinical Trial Design

Does the trial measure efficacy or effectiveness?
A method of reducing bias (randomization and masking [blinding])
Inclusion of control groups

Placebo concurrent controls
Active treatment concurrent controls (superiority versus equivalence trial)
No-treatment concurrent controls
Dose-comparison concurrent controls
External controls (historical or retrospective controls)

Use of masking (blinding) or an open-label trial
Double-blind trial
Single-blind trial

Randomization
Use of randomized versus nonrandomized controls

Outcomes (endpoints) to be measured: credible, validated, and responsive to
change

Sample size and statistical power
Significance tests to be used
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paucity of data. There is nothing very different about small clinical trials
relative to larger clinical trials other than greater uncertainty about the infer-
ences made from the results of the trials.

Design and Analysis of Small Clinical Trials

Bearing in mind the statistical power, precision, and validity limitations
of trials with small sample sizes, the committee notes that there are innova-
tive design and analysis approaches that can improve the quality of such
trials.

A number of trial designs especially lend themselves to use in studies
with small sample sizes, including n-of-1 designs, sequential designs, deci-
sion analysis-based designs, ranking and selection designs, adaptive designs,
and risk-based allocation designs (Box 3).

A necessary companion to a well-designed clinical trial is an appropriate
statistical analysis of the data from that trial. Assuming that a clinical trial
will produce data that could reveal differences in effect between two or
more interventions, statistical analyses are used to determine whether such
differences are real or due to chance. Analysis of data from trials with small
sample sizes in particular must be focused. In general, certain types of analy-
ses are more amenable to trials with small sample sizes (Box 4). Analysis
should include confidence intervals when appropriate, although in trials with
small sample sizes the confidence intervals will often be uninformative be-
cause they will be too wide.

Although Bayesian methods require the use of subjective prior distribu-
tions, in small trials it will often be possible to use data from other sources to
define the prior distributions. For example, for the problem of loss of bone
mineral density during spaceflight, data from earlier spaceflights and studies

BOX 2
Situations That Might Warrant a Small Clinical Trial

• Rare diseases
• Unique study populations (e.g., astronauts)
• Individually tailored therapies
• Environments that are isolated
• Emergency situations
• Public health urgency
• Restricted resources coupled with an important need
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of osteoporosis in immobilized individuals could provide a strong basis for
development of prior distributions. These prior distributions could be used
in a sequential trial setting that uses Bayesian methods, which would possi-
bly add considerably to the power of the study.

RECOMMENDATIONS

Because of the constraints of trials with small sample sizes, for example,
trials with participants with unique or rare diseases or health conditions, it is

BOX 3
Design Methods for Clinical Trials

Traditional Designs for Clinical Trials

Parallel group design
Cross-over design
Factorial design
Add-on design
Randomized withdrawal design
Early escape design

Special Designs for Small Clinical Trials

n-of-1 design
Sequential design
Decision analysis-based design
Ranking and selection design
Adaptive design
Risk-based allocation design

BOX 4
Statistical Approaches to Analysis of Data from

Small Clinical Trials

Sequential analysis
Hierarchical models
Bayesian analysis
Decision analysis
Statistical prediction
Meta-analysis
Risk-based allocation
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particularly important to define the research questions and select outcome
measures that will make the best possible use of the available research par-
ticipants while minimizing the risks to those participants. The limitations of
small trials make it especially important that intermediate and surrogate out-
comes be considered for measurement. It will not always be possible to mea-
sure directly the effect of an intervention on a given condition.

RECOMMENDATION 1:  Define the research question. Before un-
dertaking a small clinical trial it is particularly important that the
research question be well defined and that the outcomes and condi-
tions to be evaluated be selected in a manner that will most likely help
clinicians make therapeutic decisions.

A multidisciplinary team of experts should be assembled to plan the
research effort prospectively. Planning of clinical trials is a multistep pro-
cess, and alternative methods should be considered to identify the most
meaningful answer. To ensure that all approaches and limitations are consid-
ered, individuals experienced in trial design, statistics, and medicine are
needed during the development of the research plan.

In general, a small clinical trial is conducted because of external con-
straints, not necessarily by choice. Nonetheless, the common requirements
for these trials should be no different from those for larger trials; that is, they
must be soundly designed and appropriately analyzed to provide a reason-
able measure of the effect of an intervention. They should be designed to
have an outcome measure for determination of success, a baseline for the
measurement of change, and a means to follow up the study participants to
assess change.

RECOMMENDATION 2:  Tailor the design. Careful consideration
of alternative statistical design and analysis methods should occur at
all stages in the multistep process of planning a clinical trial. When
designing a small clinical trial, it is particularly important that the
statistical design and analysis methods be customized to address the
clinical research question and study population.

Because of the limitations of small clinical trials, it is especially impor-
tant that the results be reported with accompanying details about the sample
size, sample characteristics, and study design. The details necessary to com-
bine evidence from several related studies, for example, measurement meth-
ods, main outcomes, and predictors for individual participants should be
published. There are two reasons for this: first, it allows the clinician to
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interpret appropriately the data within the clinical context; second, it paves
the way for future analyses of the study, for example, as part of a sequential
design or a meta-analysis. In the clinical setting, the consequences might be
greater if one misinterprets the results. In the research setting, insufficiently
described design strategies and methods diminish the study’s value for fu-
ture analyses.

RECOMMENDATION 3:  Clarify methods of reporting of results of
clinical trials. In reporting the results of a small clinical trial, with its
inherent limitations, it is particularly important to carefully describe
all sample characteristics and methods of data collection and analysis
for synthesis of the data from the research.

Since analysis of the data from small clinical trials will inevitably involve
a number of assumptions, the use of several different statistical analyses is
likely to enhance the acceptance (or rejection) of various assumptions. For
example, if several different analyses give consistent results under different
assumptions, one can be more confident that the results are not due to un-
warranted assumptions. Conversely, if the analyses produce different results,
depending on which sets of assumptions are used, one might be less certain
about the original assumptions than might have been the case before the
trial was conducted. In sum, the use of alternative statistical analyses might
help identify the more sensitive variables and the key interactions in apply-
ing heterogeneous results across trials or in trying to draw generalizations
from a number of trials.

RECOMMENDATION 4:  Perform corroborative statistical analy-
ses. Given the greater uncertainties inherent in small clinical trials,
several alternative statistical analyses should be performed to evalu-
ate the consistency and robustness of the results of a small clinical
trial.

In small clinical trials, more so than in large clinical trials, one must be
particularly cautious about recognizing individual variability among partici-
pants in terms of their biology and health care preferences and administra-
tive variability in terms of what can be done from one setting to another. The
diminished power of studies with small sample sizes might mean that the
generalizability of the findings might not be a possibility in the short term, if
at all. Thus, caution should be exercised in the interpretation of the results
of small clinical trials.
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RECOMMENDATION 5:  Exercise caution in interpretation. One
should exercise caution in the interpretation of the results of small
clinical trials before attempting to extrapolate or generalize those
results.

Researchers who participate in clinical trials have proposed alternative
clinical trial designs, some of which have been applied to small clinical trials.
The committee believes that the research base in this area requires further
development. Alternative designs have been proposed in a variety of con-
texts; however, they have not been adequately examined in the context of
small clinical trials. Studies of the use and effectiveness of various designs
should be conducted and new methods should be developed. Evaluations of
the utilities of individual and combined statistical analyses in a variety of
small clinical trial designs will be necessary.

RECOMMENDATION 6:  More research on alternative designs is
needed. Appropriate federal agencies should increase support for ex-
panded theoretical and empirical research on the performances of
alternative study designs and analysis methods that can be applied to
small studies. Areas worthy of more study may include theory devel-
opment, simulated and actual testing including comparison of exist-
ing and newly developed or modified alternative designs and methods
of analysis, simulation models, study of limitations of trials with dif-
ferent sample sizes, and modification of a trial during its conduct.

CONCLUDING REMARKS

It should be noted that the various strategies and methodologies pre-
sented in this report are by no means an exhaustive list of those methods
that are applicable to small clinical trials. Indeed, other strategies may be
useful on a case-by-case basis. Moreover, the committee believes that all of
the strategies described here have potential utility in specific settings and in
studies with particular research characteristics and challenges. As a result,
no single approach is advocated above all others. In addition, this is a devel-
oping area of research. New approaches to this problem will surely arise in
the future and may well be in progress.

The importance of conducting small clinical trials only when there are
no alternatives cannot be overemphasized. The committee is not encourag-
ing the use of small clinical trials, but, rather provides advice on strategies
that should be considered in the design and analysis of small clinical trials
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when the opportunity to perform a randomized clinical trial with adequate
statistical power is not possible. In doing so, it recognizes that small clinical
trials frequently need to be viewed as part of a continuing process of data
collection. Thus, for some trials it might be impossible to definitively answer
a research question with a high degree of confidence. In those cases, per-
haps the best that one can do is assess the next set of questions to be asked.

SUMMARY OF THE COMMITTEE’S RECOMMENDATIONS

RECOMMENDATION 1:  Define the research question. Before undertaking a small
clinical trial it is particularly important that the research question be well defined and
that the outcomes and conditions to be evaluated be selected in a manner that will most
likely help clinicians make therapeutic decisions.

RECOMMENDATION 2:  Tailor the design. Careful consideration of alternative
statistical design and analysis methods should occur at all stages in the multistep pro-
cess of planning a clinical trial. When designing a small clinical trial, it is particularly
important that the statistical design and analysis methods be customized to address the
clinical research question and study population.

RECOMMENDATION 3:  Clarify methods of reporting the results of clinical trials. In
reporting the results of a small clinical trial, with its inherent limitations, it is particularly
important to carefully describe all sample characteristics and methods of data collec-
tion and analysis for synthesis of the data from the research.

RECOMMENDATION 4:  Perform corroborative statistical analyses. Given the
greater uncertainties inherent in small clinical trials, several alternative statistical anal-
yses should be performed to evaluate the consistency and robustness of the results of a
small clinical trial.

RECOMMENDATION 5:  Exercise caution in interpretation. One should exercise
caution in the interpretation of the results of small clinical trials before attempting to
extrapolate or generalize those results.

RECOMMENDATION 6:  More research on alternative designs is needed. Appro-
priate federal agencies should increase support for expanded theoretical and empirical
research on the performances of alternative study designs and analysis methods that
can be applied to small studies. Areas worthy of more study may include theory devel-
opment, simulated and actual testing including comparison of existing and newly de-
veloped or modified alternative designs and methods of analysis, simulation models,
study of limitations of trials with different sample sizes, and modification of a trial
during its conduct.
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1
Introduction

In the past several decades there has been exponential growth in the num-
ber of clinical trials conducted to test innovations in the treatment of
disease. A search of the 1999 Medline database alone found reports of

19,587 such trials (Meinert, 2000). In addition, in the past 10 years clinical
trials of drugs and other interventions have become more than a process
required to judge the safeties and efficacies of potential treatments. They

BOX 1-1
What Is a Clinical Trial?

A clinical trial is defined as a prospective study comparing the effect and value of
intervention(s) against control in human beings (Friedman, Furberg, and DeMets,
1996).

A controlled experiment having a clinical event as an outcome measure and done
in a clinic or clinical setting and involving persons having a specific disease or health
condition (Meinert, 1996).

An experiment is a series of observations made under conditions controlled by the
scientist. A clinical trial is an experiment testing medical treatments on human partici-
pants (Piantadosi, 1997).

The term clinical trials may be applied to any form of planned experiment which
involves patients and is designed to elucidate the most appropriate treatment of future
patients with a given medical condition (Pocock, 1984).
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have also become part of the health care system, in that patients often view
participation in a clinical trial as their best hope of achieving a cure (Zivin,
2000).

Although there are different interpretations of the term “clinical trial,”
in general, it is defined as an experiment designed to assess the safety or
efficacy of a test treatment (Meinert, 2000) (Box 1-1). Clinical trials refer to
planned experiments that involve human participants and that are designed
to elucidate the most appropriate treatments for future patients with a given
medical condition (Pocock, 1984). Perhaps the most essential feature of a
clinical trial is that it aims to use results for a limited sample of patients to
make inferences about how treatment should be administered to the general
population of patients who will require therapy in the future (Pocock, 1984).

WHEN THE STANDARD APPROACH TO CLINICAL TRIALS
IS NOT FEASIBLE

Adequately powered randomized clinical trials (RCTs) and double blind
RCTs are generally regarded as the most authoritative research methods for
establishment of the efficacies of therapeutic interventions. By allocating
sufficient numbers of individuals to groups—for example, an experimental
or a control group—investigators can estimate or determine with some de-
gree of certainty the effect of a given intervention.

However, when the available population of research participants does
not allow the conduct of an RCT with adequate statistical power, there might
still be a need to design and perform clinical research (e.g., treatments are
not available for a rare disorder or a unique patient population or studies
require the participation of patients with terminal or severely debilitating or
incapacitating disorders). Some distinctive research populations—such as
astronauts or members of a small, isolated community—may consist of less
than five individuals. For example, a study focused on assessing the effects
of microgravity on bone mineral density loss during space missions would
have to rely on data for a few individuals (see Box 1-2). This report defines
this research situation as a small clinical trial and explores the various design
and analytical strategies one might consider to approach a small clinical trial.

Obtaining sufficiently large control groups for research with small num-
bers of participants can be difficult for research involving individuals with
severe, debilitating, or incapacitating conditions, and the use of untreated or
placebo control groups can raise ethical dilemmas (Altman, 2000; Delaney,
2000; Emond, 2000). Historically, drug developers and federal regulators
have been wary of small clinical trials for a number of reasons, but primarily
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because of their lack of statistical power and generalizability (Table 1-1).
Thus, in general, a small clinical trial is conducted because of external con-
straints, not necessarily by choice. Nonetheless, the general requirements
for small clinical trials are no different than those for adequately powered
“large clinical” trials; that is, they must be sufficiently designed and appro-
priately analyzed to provide a reasonable measure of the effect of an inter-
vention. They should be designed to have an outcome measure for determi-
nation of success, a baseline measure that can be used to determine changes,
and a means to monitor the changes (Meinert, 2000). Because of the design

BOX 1-2
Case Study: Effects of Long-Term Microgravity Exposure

on Weight-Bearing Bones of Cosmonauts

Microgravity-induced bone mineral density (BMD) loss was first suspected in the
1970s, but systematic investigations with astronauts and cosmonauts did not com-
mence until the 1990s. Investigation is made difficult because there are few potential
participants and the conditions of microgravity, in terms of length of exposure, vary
with the lengths of space missions and the availability of individual astronauts or cos-
monauts to participate in clinical investigations while they are on those missions.

Observational studies suggest that the loss in BMD may be on the order of 1 to 2
percent per month during extended exposure to microgravity. Recently, Vico et al.
(2000) reported measurements of BMD at the distal radius and tibia in 15 cosmonauts
on the Russian Mir space station who had sojourned in space for 1 month (n = 2), 2
months (n = 2), or 6 months (n = 11) since 1994. BMD was measured before launch
and the week after landing. Each cosmonaut who spent at least 2 months in space was
allowed a recovery period equal to the duration of the corresponding space mission.

The findings demonstrate striking interindividual variations in BMD responses and
indicated that the BMD of neither cancellous bone nor cortical bone of the radius was
significantly changed at any time. In the weight-bearing tibial site, however, cancellous
BMD loss was already present after the first month and deteriorated with mission dura-
tion. In tibial corticies, BMD loss was noted after a 2-month mission. In the group who
had been in space for 6 months, cortical BMD loss was less pronounced than cancel-
lous BMD loss. In some individuals the tibial BMD deterioration was marked. Variations
in tibial BMD loss were also large during recovery, and the loss persisted in some
individuals. These studies have found a mean BMD loss of about 2 percent after 6
months of space travel, with a standard deviation of approximately 1.2 percent. If the
clinically important effect of an intervention that limits the total BMD loss to 1 percent is
to be detected, the total sample size needed is 50 (significance level = 5 percent with
power of 90 percent [as determined by a one-sided t test]). With only three to six
astronauts per flight and one or two long missions per year, it would take up to 10
years to evaluate a single intervention in a traditional clinical trials.

The challenge is to conduct clinical trials with small populations to evaluate the
efficacies of various interventions for the prevention of BMD.
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TABLE 1-1  Concerns About Small Clinical Trials

• Small numbers leave much to chance.
• Statistically significant outcomes from small clinical trials may not be as

generalizable because the circumstances in which the rules apply may be narrower than
those for larger clinical studies with identical probabilities (p values).

• Often, there are too many variables to ascertain cause and effect to any meaningful
degree.

• Small clinical trials are unlikely to tease out anything but gross effects and are
limited in their ability to analyze covariates.

• For studies of drugs, and other interventions, small clinical trials may be incapable
of identifying true side effects and safety concerns and are also constrained for the reasons
listed above.

SOURCE: Delaney (2000).

and analysis constraints of small clinical trials and because of uncertainties
inherent to small clinical trials, it is likely that they will require at least as
much—and probably more—thought than traditional, large clinical trials.

In some cases, however, properly designed small clinical trials can con-
tribute to substantial evidence of efficacy; however, those conclusions may
require the use of assumptions and inferences given the paucity of data
(Siegel, 2000). Small clinical trials may successfully be used to study diseases
or conditions with a well-described natural history with little variation; when
sensitive pharmacodynamic effects are directly related to pathophysiology;
when good nonhuman models are available; and when the intervention has a
large effect on efficacy, produces a predictable relationship between measur-
able drug levels and effects, and has been applied to a related condition
(Siegel, 2000) (Table 1-2). Traditionally, small studies are more likely to be
conducted to test surgical procedures than to test drugs (Delaney, 2000;
Emond, 2000) (Box 1-3). They are least likely to be useful for the study of
complex disease syndromes with highly variable outcomes (e.g., some
chronic diseases such as arteriosclerotic cardiovascular disease), for drugs
with less than dramatic effects in vitro, for illnesses in which correlates of
success are unclear, in situations in which the risk of short-term death is
high, and for surgical procedures for which there are many complex and
confounding factors (Delaney, 2000; Faustman, 2000; Mishoe, 2000).

A SEARCH FOR ALTERNATIVES

New approaches to protocol design are needed for trials with small
sample sizes that can assess the potential therapeutic efficacies of drugs,
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biologics, devices, and other medical interventions. For example, a possible
alternative is to assess the therapeutic results in a single treated population
by sequentially measuring whether the intervention results in outcomes that

TABLE 1-2  Situations That Might Warrant a Small Clinical Trial

• Rare diseases
• Unique study populations (e.g., astronauts)
• Individually tailored therapies
• Environments that are remote or isolated
• Emergency situations
• Public health urgency
• Restricted resources coupled with a high level of need

BOX 1-3
Case Study: Clinical Trial of Organ Transplantation in

HIV-Positive Individuals

Human immunodeficiency virus (HIV)-positive individuals now live long enough to
be considered candidates for cardiac or liver transplantation (Gow and Mutimer,
2001). A very small number of HIV-positive organs become available for transplanta-
tion into HIV-positive individuals. Whether the immunosuppressive agents required for
organ transplantation will accelerate or slow the progression of HIV infection or AIDS
is an unresolved research question. A study is underway to evaluate the outcomes of
transplants of hearts and livers from HIV-positive donors into HIV-positive recipients.
There are a small number of candidates for such a study, and the only alternative is to
not do a transplant. In that event, death is the ultimate outcome since long-term alterna-
tive supports—for example, dialysis for renal failure—are not available for patients
with liver failure.

The research question to be answered in a clinical trial is whether transplantation
will benefit patients with HIV infection or AIDS with a diminished life expectancy from
cardiac or liver failure due to their impaired organs if they do not receive a transplant?
The ideal study should determine the risk of transplantation (and associated interven-
tions) on the progression of HIV infection or AIDS and its effect on life expectancy. The
projected life expectancy is approximately 6 months without transplantation, and only
5 percent of the participants are expected to be alive after 12 months. The 1-year
survival rate after standard heart and liver transplantation in non-HIV infected individ-
uals approaches 90 percent. A survival rate of 25 percent at 1 year in the HIV-infected
or AIDS patients who receive a transplant would be a clinically important advance.
With a significance level of 0.05 and a power of 0.9, the sample size needed to detect
an increase in the 1-year survival rate from 5 to 25 percent is 150. At the current rate
of organ availability, such a study would take many years.
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fall above or below a preestablished probability range for an efficacious out-
come. Such a clinical trial could be considered to have demonstrated effi-
cacy when the cumulative observed results fall within or above the pre-
scribed confidence range, or the trial could be stopped when the cumulative
observed effect falls below the preestablished level of confidence (Box 1-4).
A major question, however, for this and other approaches is whether the
science base of alternative methods alone or in combination is sufficiently
developed for these nonrandomized clinical trials to be effective in demon-
strating efficacy in studies with small sample size.

It has been recognized for some time that RCTs—although highly desir-
able—are neither practical nor feasible as a means of answering all clinical
research questions. A variety of other methods, such as non-RCTs, observa-
tional methods, naturalistic studies, and case-control studies, have been used
in clinical investigations. In addition, there has been increasing discussion
over the past decade about the value of measuring surrogate markers rather
than traditional clinical endpoints in clinical trials.

BOX 1-4
Case Study: Clinical Trial for Treatment of

Sickle Cell Disease

Sickle cell disease is a red blood cell (RBC) disorder that affects 1 in 200 African
Americans. Half of all individuals living with sickle cell disease die before age 40. The
most common complications include stroke, renal failure, and chronic severe pain.
Patients who have a stroke are predisposed to having another one.

Mixed donor and host stem cell chimerism (i.e., the sickle cell host recipient has a
cellular constitution made up of both the donor and the recipient subject’s cells) is
curative for sickle cell disease (Krishnamutri, Blazar, and Wagner, 2001). Only 20
percent donor RBC production (with 80 percent recipient RBC production) is required to
cure the abnormality. Conditioning of the recipient is required for the bone marrow
transplant to be successfully established. The degree of human leukocyte antigen (HLA)
mismatch, as well as the sensitization state (i.e., chronic transfusion immunizes the
recipient), influences how much conditioning is required to establish 20 percent donor
chimerism.

In patients who have an HLA-identical donor and who have not been heavily trans-
fused, 200 centigrays of total body irradiation (TBI) is sufficient to establish donor
engraftment. This dose of irradiation has been shown to be safe and well tolerated. In
heavily transfused recipients who are HLA-mismatched, more conditioning will proba-
bly be required. The optimal dose of TBI for this cohort has not been established. The
focus of this hypothetical study is to establish the optimum dose of TBI dose to achieve
20 percent donor chimerism in patients enrolled in the protocol (Chapter 3).
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In 1990, the Institute of Medicine (IOM) published Medical Interven-
tion at the Crossroads: Modern Methods of Clinical Investigation, which dis-
cussed the benefits and drawbacks of non-RCTs. However, the issue of when
and how to conduct a small clinical trial continues to challenge many areas
of biomedical science.

IOM COMMITTEE PROCESS AND STATEMENT OF TASK

In response to the growing need for reliable and valid methods for clini-
cal research with small populations, the National Aeronautics and Space
Administration requested that the IOM undertake a study of strategies for
small-number-participant clinical research trials. However, the term “small
number” may convey different meanings to different constituencies; conse-
quently, the committee prefers to use the phrase “small clinical studies” or
“small clinical trials.”

The committee, consisting of individuals with expertise in biostatistics,
clinical pharmacology, clinical research, ethics, and research design, was
charged with the following specific tasks:

• Assess the current methodologies for conducting clinical trials with
small populations. The analysis of methods used to conduct small clinical
trials will include assessment of the published literature and commissioned
papers on various strategies such as (1) meta-analysis to combine disparate
information from several studies, including Bayesian techniques, as in the
confidence profile method, and (2) other alternatives to RCTs, such as as-
sessments of therapeutic results for a single treated population by sequen-
tially measuring whether the outcomes from the intervention fall above or
below a preestablished probability outcome range and meet predesigned
specifications as opposed to incremental improvements.

• Convene a 1-day conference during which participants from federal
research and regulatory agencies, industry, academia, and other areas of clini-
cal research and practice will discuss the progress being made in the strate-
gies and the state of the science in the design, conduct, and evaluation of
clinical trials of drugs, biologics, devices, and other medical interventions in
populations with small numbers of individuals. Methods including RCTs,
meta-analysis, decision analysis, and sequential clinical trial approaches will
be considered in terms of their potentials and problems. The discussions
will include, where possible, ethical and statistical evaluations and compari-
sons.
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• The committee, through consideration of background materials and
presentations at the conference, will review the methodology for clinical tri-
als with small populations and make recommendations for future research
to continue development of this area of medical research.

ORGANIZATION OF THE REPORT

This report is organized around the two major issues in the performance
of any clinical trial: design and analysis. Chapter 2 addresses the fundamen-
tal tenets of clinical trial design and how they are challenged and possibly
addressed by studies with small numbers of participants. Chapter 3 focuses
on several statistical approaches that can be used to analyze small clinical
trials. Each chapter provides recommendations and suggests research needs.

It should be noted that the various strategies and methodologies pre-
sented in this report are by no means an exhaustive list of those methods
that are applicable to small clinical trials. Indeed, other strategies not pre-
sented here may be useful on a case-by-case basis. Moreover, this is a devel-
oping area of research, and new approaches to small clinical trials will arise
in the future and may well be in progress. Finally, the amount of attention
paid to a particular area described in the report is not necessarily propor-
tional to its importance or utility but, rather, may have been motivated by a
particular example that the committee used to illustrate a small-sample-size
clinical problem and potential solution. The committee’s goal is to provide a
balanced overview and analysis of various methods in use and to suggest
new ones where appropriate.
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2
Design of

Small Clinical Trials

The design and conduct of any type of clinical trial require three con-
siderations: first, the study should examine valuable and important
biomedical research questions; second, it must be based on a rigorous

methodology that can answer a specific research question being asked; and
third, it must be based on a set of ethical considerations, adherence to which
minimizes the risks to the study participants (Sutherland, Meslin, and Till,
1994). The choice of an appropriate study design depends on a number of
considerations, including:

• the ability of the study design to answer the primary research ques-
tion;

• whether the trial is studying a potential new treatment for a condition
for which an established, effective treatment already exists;

• whether the disease for which a new treatment is sought is severe or
life-threatening;

• the probability and magnitude of risk to the participants;
• the probability and magnitude of likely benefit to the participants;
• the population to be studied—its size, availability, and accessibility;

and
• how the data will be used (e.g., to initiate treatment or as preliminary

data for a larger trial).
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Because the choice of a study design for any particular trial will depend
on these and other factors, no general prescription can be offered for the
design of clinical trials. However, certain key issues are raised when random-
ized clinical trials (RCTs) with adequate statistical power are not feasible
and when studies with smaller populations must be considered. The utility
of such studies may be diminished, but not completely lost, and in other
ways may be enhanced.

To understand what is lost or gained in the design and conduct of stud-
ies with very small numbers of participants, it is important to first consider
the basic tenets of clinical trial design (Box 2-1).

KEY CONCEPTS IN CLINICAL TRIAL DESIGN

Judgments about the effectiveness of a given intervention ultimately rest
on an interpretation of the strength of the evidence arising from the data
collected. In general, the more controlled the trial, the stronger is the evi-
dence.

The study designs for clinical trials can take several forms, most of which
are based on an assumption of accessible sample populations. Clinical trials
of efficacy ask whether the experimental treatment works under ideal condi-

BOX 2-1
Important Concepts in Clinical Trial Design

Does the trial measure efficacy or effectiveness?
A method of reducing bias (randomization and masking [blinding])
Inclusion of control groups

Placebo concurrent controls
Active treatment concurrent controls (superiority versus equivalence trial)
No-treatment concurrent controls
Dose-comparison concurrent controls
External controls (historical or retrospective controls)

Use of masking (blinding) or an open-label trial
Double-blind trial
Single-blind trial

Randomization
Use of randomized versus nonrandomized controls

Outcomes (endpoints) to be measured: credible, validated, and responsive to change
Sample size and statistical power
Significance tests to be used
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tions. In contrast, clinical trials of effectiveness ask whether the experimen-
tal treatment works under ordinary circumstances. Often, trials of efficacy
are not as sensitive to issues of access to care, the generalizability of the
results from a study with highly selective sample of patients and physicians,
and the level of adherence to treatment regimens. Thus, when a trial of effi-
cacy is done with a small sample of patients, it is not clear whether the ex-
perimental intervention will be effective when a broader range of providers
and patients use the intervention. On the other hand, trials of effectiveness
can be problematic if they produce a negative result, in which case it will be
unclear whether the experimental intervention would fail under any circum-
stances. Thus, the issue of what is preferred in a small clinical study—a trial
of efficacy or effectiveness—is an important consideration.

In the United States, the Food and Drug Administration (FDA) over-
sees the regulation and approval of drugs, biologics, and medical devices. Its
review and approval processes affect the design and conduct of most new
clinical trials. Preclinical testing of an experimental intervention is performed
before investigators initiate a clinical trial. These studies are carried out in
the laboratory and in studies with animals to provide preliminary evidence
that the experimental intervention will be safe and effective for humans.
FDA requires preclinical testing before clinical trials can be started. Safety
information from preclinical testing is used to support a request to FDA to
begin testing the experimental intervention in studies with humans.

Clinical trials are usually classified into four phases. Phase I trials are the
earliest-stage clinical trials used to study an experimental drug in humans,
are typically small (less than 100 participants), and are often used to deter-
mine the toxicity and maximum safe dose of a new drug. They provide an
initial evaluation of a drug’s safety and pharmacokinetics. Such studies also
usually test various doses of the drug to obtain an indication of the appropri-
ate dose to be used in later studies. Phase I trials are commonly conducted
with nondiseased individuals (healthy volunteers). Some phase I trials, for
example, those of studies of treatments for cancer, are performed with indi-
viduals with advanced disease who have failed all other standard treatments
(Heyd and Carlin, 1999).

Phase II trials are often aimed at gathering preliminary data on whether
a drug has clinical efficacy and usually involve 100 to 300 participants. Fre-
quently, phase II trials are used to determine the efficacy and safety of an
intervention in participants with the disease for which a new intervention is
being developed.

Phase III trials are advanced-stage clinical trials designed to show con-
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clusively how well a drug works. Phase III trials are usually larger, frequently
multi-institutional studies, and typically involve from a hundred to thou-
sands of participants. They are comparative in nature, with participants usu-
ally assigned by chance to at least two arms, one of which serves as a control
or a reference arm and one or more of which involve new interventions.
Phase III trials generally measure whether a new intervention extends sur-
vival, or improves the health of participants receiving the intervention and
has fewer side effects.

Some phase II and phase III trials are designed as pivotal trials (some-
times also called confirmatory trials), which are adequately controlled trials
in which the hypotheses are stated in advance and evaluated. The goal of a
pivotal trial is to attempt to eliminate systematic biases and increase the
statistical power of a trial. Pivotal trials are intended to provide firm evi-
dence of safety and efficacy.

Occasionally, FDA requires phase IV trials, usually performed after a
new drug or biologic has been approved for use. These trials are post-
marketing surveillance studies aimed at obtaining additional information
about the risks, benefits, and optimal use of an intervention. For example, a
phase IV trial may be required by FDA to study the effects of an interven-
tion in a new patient population or for a stage of disease different from that
for which it was originally tested. Phase IV trials are also used to assess the
long-term effects of an intervention and to reveal rare but serious side ef-
fects.

One criticism of the classification of clinical trials presented above is
that it focuses on the requirements for the regulation of pharmaceuticals,
leaving out the many other medical products that FDA regulates. For ex-
ample, new heart valves are evaluated by FDA on the basis of their ability to
meet predetermined operating performance characteristics. Another device
is the intraocular lens whose performance must be satisfied in a prespecified
grid. Medical device studies, however, rely on a great deal of information
about the behavior of the control group that often cannot be obtained or
that is very difficult to obtain in small clinical trials because of the small
number or lack of control participants.

A much more inclusive and general approach that subsumes the four
phases of clinical trials is put forth by Piantadosi (1997), who defines the
four phases as (1) early-development studies (testing the treatment mecha-
nism), (2) middle-development studies (treatment tolerability), (3) compara-
tive (pivotal, confirmatory) studies, and (4) late-development studies (ex-
tended safety or postmarketing studies). This approach is more inclusive
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than trials of pharmaceuticals; it includes trials of vaccines, biological and
gene therapies, screening devices, medical devices, and surgical interven-
tions.

The ethical conduct of a clinical study of the benefits of an intervention
requires that it begin in a state of equipoise. Equipoise is defined as the point
at which a rational, informed person—whether patient, provider, or re-
searcher—has no preference between two (or more) available treatments
(Freedman, 1987; Lilford and Jackson, 1995). When used in the context of
research, equipoise describes a state of genuine uncertainty about whether
the experimental intervention offers greater benefit or harm than the con-
trol intervention. Equipoise is advocated as a means of achieving high scien-
tific and ethical standards in randomized trials (Alderson, 1996). True equi-
poise might be more of a challenge in small clinical trials, because the degree
of uncertainty might be diminished by the nature of the disorder, the lack of
real choices for treatment, or insufficient data to make a judgment about the
risks of one treatment arm over another.

A primary purpose of many clinical trials is evaluation of the efficacy of
an experimental intervention. In a well-designed trial, the data that are col-
lected and the observations that are made will eventually be used to over-
turn the equipoise. At the end of a trial, when it is determined whether an
experimental intervention has efficacy, the state of clinical equipoise has been
eliminated. Central principles in proving efficacy, and thereby eliminating
equipoise, are avoiding bias and establishing statistical significance. This is
ideally done through the use of controls, randomization, blinding of the
study, credible and validated outcomes responsive to small changes, and a
sufficient sample size. In some trials, including small clinical studies, the
elimination of equipoise in such a straightforward manner might be diffi-
cult. Instead, estimation of a treatment effect as precisely as necessary may
be sufficient to distinguish the effect from zero. It is a more nuanced ap-
proach, but one that should be considered in the study design.

Adherence to an ethical process, whereby risks are minimized and vol-
untary informed consent is obtained, is essential to any research involving
humans and may be particularly acute in small clinical trials, in which the
sample population might be easily identified and potentially more vulner-
able. Study designs that incorporate an ethical process may help in reducing
concerns about some of problems in design and interpretation that naturally
accompany small clinical trials.
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Reducing Bias

Bias in clinical trials is the potential of any aspects of the design, con-
duct, analysis, or interpretation of the results of a trial to lead to conclusions
about the effects of an intervention that are systematically different from the
truth (Pocock, 1984). It is both a scientific and an ethical issue. It is rela-
tively easy to identify potential sources of bias in clinical trials, but investiga-
tors have a limited ability to effectively remove the effects of bias. It is often
difficult to even determine the net direction and effect of bias on the study
results. Randomization and masking (blinding) are the two techniques gen-
erally used to minimize bias and to maximize the probability that the test
intervention and control groups are similar at the start of the study and are
treated similarly throughout its course (Pocock, 1984). Clinical trials with
randomized controls and with blinding, when practical and appropriate,
represent the standard for the evaluation of therapeutic interventions.

Improper randomization or imperfect masking may result in bias. How-
ever, bias may work in any direction (Hauck and Anderson, 1999). In addi-
tion, the data for participants who withdraw or are lost from the trial can
bias the results.

Alternative Types of Control Groups

A control group in a clinical trial is a group of individuals used as a
comparison for a group of participants who receive the experimental treat-
ment. The main purpose of a control group is to permit investigators to
determine whether an observed effect is truly caused by the experimental
intervention being tested or by other factors, such as the natural progression
of the disease, observer or participant expectations, or other treatments
(Pocock, 1996). The experience of the control group lets the investigator
know what would have happened to study participants if they had not re-
ceived the test intervention or what would have happened with a different
treatment known to be effective. Thus, the control group serves as a baseline.

There are numerous types of control groups, some of which can be used
in small clinical trials. FDA classifies clinical trial control groups into five
types: placebo concurrent controls, active-treatment concurrent controls, no-
treatment concurrent controls, dose-comparison concurrent controls, and ex-
ternal controls (Food and Drug Administration, 1999). Each type of control
group has its strengths and weaknesses, depending on the scientific question
being asked, the intervention being tested, and the group of participants
involved.
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In a trial with placebo concurrent controls, the experimental intervention
is compared with intervention with a placebo. Participants are randomized
to receive either the new intervention or a placebo. Most placebo-controlled
trials are also double blind, so that neither the participants nor the physi-
cian, investigator, or evaluator knows who is assigned to the placebo group
and who will receive the experimental intervention. Placebo-controlled tri-
als also allow a distinction between adverse events due to the intervention
and those due to the underlying disease or other potential interference, if
they occur sufficiently frequently to be detected with the available sample
size. It is generally accepted that a placebo-controlled trial would not be
ethical if an established, effective treatment that is known to prevent serious
harm, such as death or irreversible injury, is available for the condition being
studied (World Medical Association, 1964). There may be some exceptions,
however, such as cases in which the established, effective treatment does not
work in certain populations or it has such adverse effects that patients refuse
therapy. The most recent version of the Declaration of Helsinki (October
2000 [World Medical Association, 2000]) argues that use of a placebo is
unethical regardless of the lack of severity of the condition and regardless of
whether the best possible treatment is available in the setting or location in
which the trial is being conducted. The benefits, risks, burdens, and effec-
tiveness of a new method should be tested against those of the best current
prophylactic, diagnostic, and therapeutic methods. At present, many U.S.
scientists (including those at FDA) disagree with that point of view. The
arguments are complex and need additional discussion and time before a
consensus can be achieved if this new direction or another one similar to it is
to replace the previous recommendation.

Although placebos are still the most common control used in pharma-
ceutical trials, it is increasingly common to compare an experimental inter-
vention with an existing established, effective treatment. Active-treatment
concurrent control trials are extremely useful in cases in which it would not
be ethical to give participants a placebo because doing so would pose undue
risk to their health or well being. In an active-control study, participants are
randomly assigned to the experimental intervention or to an alternative
therapy, the active-control treatment. Such trials are usually double blind,
but this is not always possible. For example, many oncology studies are con-
sidered impossible to blind because of different regimens, different routes
of administration, and different toxicities (Heyd and Carlin, 1999). Despite
the best intentions, some treatments have unintended effects that are so spe-
cific that their occurrence will inevitably identify the treatment received to
both the patient and the medical staff. It is particularly important to do
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everything possible to have blinded interpretation of outcome variables or
critical endpoints when the type of treatment is obvious. In a study in which
an active control is used, it may be difficult to determine whether any of the
treatments has an effect unless the effects of the treatments are obvious or a
placebo control is included, or a placebo-controlled trial has previously dem-
onstrated the efficacy of the active control.

Active treatment-controlled trials can take two forms: a superiority trial,
in which the new drug is evaluated to determine if it is superior to the active
control, and an equivalence trial (a noninferiority trial), in which the new
drug is tested to determine if it is equivalent to but not inferior to the active
control (Hauck and Anderson, 1999). Equivalence trials are designed to
show that the new intervention is as effective or nearly as effective as the
established effective treatment. For diseases for which an established, effec-
tive treatment is available and in use, a common design randomizes partici-
pants to receive either an experimental intervention or the established, ef-
fective treatment. It is not scientifically possible to prove that two different
interventions are exactly equivalent, only that they are nearly equivalent.

In a trial with no-treatment concurrent controls, a group receiving the
experimental intervention is compared with a group not receiving the treat-
ment or placebo. The randomized no-treatment control trial is similar to the
placebo-controlled trial. However, since it often cannot be fully blinded,
several aspects of the trial may be affected, including retention of partici-
pants, patient management, and all aspects of observation (Food and Drug
Administration, 1999). A no-treatment concurrent control trial is usually
used when blinding is not feasible, such as when a sham surgery would have
to be used or when the side effects of the experimental intervention are
obvious. No-treatment concurrent control trials can also be used when the
effects of the treatment are obvious and there is a small placebo effect. To
reduce bias when a no-treatment control is used, it is desirable that those
responsible for clinical assessment remain blinded.

In a dose-comparison concurrent control trial, participants are assigned to
one of several dose groups so that the effects of different doses of the test
drug (dose-response) can be compared. Most dose-response-controlled tri-
als are randomized and double blind. They may include a placebo group or
an active control group or both. For example, it is not uncommon to show
no difference between doses in a dose-response study. Unless the action of
the drug is obvious, inclusion of a placebo group is extremely useful to de-
termine if the drug being tested has no effect at all or a constant positive
effect above the minimum dose.

There are several advantages to using a dose-response control instead of
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a placebo control. When an experimental intervention has pharmacological
effects that could break the blinding, it may be easier to preserve blinding in
a dose-response study than in a placebo-controlled trial (Food and Drug
Administration, 1999). Also, if the optimally safe and effective dose of an
experimental intervention is not known, it may be more useful to study a
range of doses than to choose a single dose that may be suboptimal or toxic
(Pocock, 1996). Sometimes the optimal dose of a drug has unacceptable
toxicity and a lower dose—even though it is not optimal for the treatment of
the disease—is safer. In this case, a dose-response-controlled trial can be
used to optimize the effective dose while minimizing the concomitant toxic-
ity. However, the same ethical issues related to withholding an established,
effective treatment from participants in placebo-controlled trials are relevant
in a dose-response study (Clark and Leaverton, 1994).

In an external control trial, participants receiving the intervention being
tested are compared with a group of individuals who are separate from the
population tested in the trial. The most common type of external control is a
historical control (sometimes called a retrospective control) (Gehan, 1982).
Individuals receiving the experimental intervention are compared with a
group of individuals tested at an earlier time. For example, the results of a
prior clinical trial published in the medical literature may serve as a histori-
cal control. The major problem with historical controls is that one cannot
ensure that the comparison is fair because of the variability in patient selec-
tion and the experimental environment. If historical controls are obtained
from a previous trial conducted in the same environment or by the same
investigators, there is a greater chance of reducing the potential bias (Pocock,
1984). Studies have shown that externally controlled trials tend to overesti-
mate the efficacies of experimental treatments (Sacks, Chalmers, and Smith,
1982), although one example has found the treatment effect to be underesti-
mated (Farewell and D’Angio, 1981). Therefore, when selecting an external
control, it is extremely important to try to control for these biases by select-
ing the control group before testing of the experimental intervention and
ensuring that the control group is similar to the experimental group in as
many ways as possible.

Trials with external controls sometimes compare the group receiving
the experimental intervention with a group tested during the same time pe-
riod but in another setting. A variation of an externally controlled trial is a
baseline-controlled trial (e.g., a before-or-after trial). In a baseline-controlled
trial, the health condition of the individuals before they received the experi-
mental intervention is compared with their condition after they have re-
ceived the intervention.
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It is increasingly common for studies to have more than one type of
control group, for example, both an active control and a placebo control. In
those trials the placebo control serves as an internal control to provide evi-
dence that the active control had an effect. Some trials compare several doses
of a test drug with several doses of an active control drug, all of which may
then be compared with a placebo.

In some instances, the only practical way to design a clinical trial is as an
uncontrolled trial. Uncontrolled trials are usually used to test new experi-
mental interventions for diseases for which no established, effective treat-
ments are available and the prognosis is universally poor without therapy. In
uncontrolled trials, there is no control group for comparison, and it is not
possible to use blinding and randomization to minimize bias. Uncontrolled
trials are similar to externally controlled trials, in the sense that the out-
comes for research participants receiving the experimental intervention are
compared with the outcomes before the availability of the intervention.
Therefore, the scientific grounds for the experimental intervention must be
strong enough and its effects must be obvious enough for the positive results
of an uncontrolled trial to be accepted. History is replete with examples of
failed uncontrolled trials, such as those for the drug laetrile and the antican-
cer agent interferon (Pocock, 1984).

Matching and Stratification

In many cases investigators may be faced with a situation in which they
have a potentially large historical control sample that they want to compare
with a small experimental sample in terms of one or more endpoints. This is
typically a problem in observational studies in which the individuals have
not been randomized to the control and experimental groups. The question
is, how does one control for the bias inherent in the observational nature of
these data? Perhaps the experimental participants have in some way been
self-selected for their illness or the intervention that they have received. This
is not a new issue. In fact, it is closely related to statistical thinking and
research on analysis of observational data and causal inference. For example,
as early as 1968, William G. Cochran considered the use of stratification and
subclassification as a tool for removing bias in observational studies. In a
now classic example, Cochran examined the relationship between mortality
and smoking using data from a large medical database (Cochran, 1968). The
first row of Table 2-1 shows that cigarette smoking is unrelated to mortality,
but pipe smoking appears to be quite lethal. The result of this early data-
mining exercise could have easily misled researchers for some time at the
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early stages of scientific discovery. It turns out that, at least at the time that
these data were collected, pipe smokers were on average much older than
cigarette smokers, hence the false association with an increased rate of mor-
tality in the non-stratified group. Cochran (1968) illustrated the effect that
stratification (i.e., by age) has on the direction and ultimate interpretation of
the results, revealing the association between cigarette smoking and mortal-
ity (Table 2-1).

It might be argued that a good data analyst would never have made this
mistake because such an analyst would have tested for relevant interactions
with important variables such as age. However, the simple statistical solu-
tion to this problem can also be misleading in an analysis of observational
data. For example, nothing in the statistical output alerts the analyst to a
potential nonoverlap in the marginal distributions. An investigator may be
comparing 70-year-old smokers with 40-year-old nonsmokers, whereas tra-
ditional statistical approaches assume that the groups have the same
covariate distributions and the statistical analyses are often limited to linear
adjustments and extrapolation. Cochran illustrated that some statistical ap-
proaches (e.g., stratification or subclassification) produced more robust so-
lutions when they were applied to naturalistic data than when they were
applied to other types of data. Rosenbaum and Rubin (1983) extended the
notion of subclassification to the multivariate case (i.e., more than one strati-
fication variable) by introducing the propensity score. Propensity score
matching allows the matching of cases and controls in terms of their propen-
sities or probabilities of receiving the intervention on the basis of a number
of potentially confounding variables. The result is a matched set of cases and
controls that are, in terms of probability, equally likely to have received the
treatment. The limitation is that the results from such a comparison will be

TABLE 2-1  Smoking and Mortality

Mortality (%) per 1,000 Person-Years

Stratification or Cigarette Pipe and
subclassification Nonsmokers Smokers Cigar Smokers

One (all ages in database) 13.5 13.5 17.4
Two 13.5 16.4 14.9
Three 13.5 17.7 14.2
Ten 13.5 21.2 13.7

SOURCE: Cochran (1968).
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less generalizable than the results of a randomized study, in which each indi-
vidual in the total sample has the same likelihood of being a case or a con-
trol.

In randomized experiments, ignoring important covariates increases the
standard errors of the estimates. By contrast, in observational studies bias
can result and the standard errors can be underestimated, leading to an op-
portunity for a chance association and potentially misleading results. Such
problems become more complex as the number of potential outcome vari-
ables increase beyond one.

Masking (Blinding)

Investigators in clinical trials use the method of masking (or blinding),
in which neither the participant nor the physician, investigator, or evaluator
knows who is assigned to the placebo or control group and who will receive
the experimental intervention. The purpose of masking is to minimize the
occurrences of conscious and unconscious biases in the conduct of a clinical
trial and in the interpretation of its results (Pocock, 1984). The knowledge
of whether a participant is receiving the intervention under study or is in the
control group may have an effect on several aspects of a study, including the
recruitment and allocation of participants, their subsequent care, the atti-
tudes of the study participants toward the interventions, the assessment of
outcomes, the handling of withdrawals, and the exclusion of data from analy-
sis. The essential aim of masking is to prevent identification of the interven-
tions that individuals are receiving until all opportunities for biases have
passed (Pocock, 1984). Many randomized trials that have not used appro-
priate levels of masking show larger treatment effects than blinded studies
(Day and Altman, 2000).

In a double-blind trial, neither the participants nor the research or medi-
cal staff responsible for the management or clinical evaluation of the indi-
viduals knows who is receiving the experimental intervention and who is in
the control group. To achieve this, the interventions being compared during
the trial must be disguised so that they cannot be distinguished in any way
(e.g., by formulation, appearance, or taste) by the research participants or
the investigators. Double-blind trials are thought to produce more objective
results, because the expectations of the investigators and participants about
the experimental intervention do not affect the outcome of the trial.

Although a double-blind study is ideal for the minimization of bias in
clinical trials, use of such a study design may not always be feasible. The
interventions may be so different that it is not possible to disguise one from
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the other, for example, surgery versus drug therapy. If sham surgery would
be necessary to maintain blinding, ethical problems associated with the use
of sham surgery may proscribe the use of a double-blind design. Two drugs
may have different forms (e.g., an intravenously administered form versus a
tablet form) that cannot be changed without changing the properties of the
drugs. One way to design a double-blind trial in this instance is to use a
double-dummy technique (e.g., the use of two placebos to disguise which
drug the participants are receiving).

An alternative design when a double-blind trial is not feasible is the
single-blind trial. In a single blind trial the investigators and their colleagues
are aware of the intervention but the research participant is not. When blind-
ing is not feasible, an open-label trial, in which the identity of the interven-
tion is known to both the investigator and the participants, is used. One way
to reduce bias in single blind and open-label trials is for those who conduct
all clinical assessments to remain blinded to the assignment of interventions.
In single-blind or open-label trials, it is important to place extra emphasis on
the minimization of the various known sources of bias as much as possible.

Randomization

Randomization is the process of assigning participants to intervention
regimens by using a mechanism of allocation by chance. Random allocation
for the comparison of different interventions has been a mainstay of experi-
mental designs since the pioneering work of Ronald A. Fisher. Fisher con-
ducted randomized experiments in agriculture in which the experimental
units were plots of land to which various crops and fertilizers were assigned
in a random arrangement (Fisher, 1935). Randomization guards against the
use of judgment or systematic arrangements that would lead to biased re-
sults. Randomization introduces a deliberate element of chance into the as-
signment of interventions to participants and therefore is intended to pro-
vide a sound statistical basis for the evaluation of the effects of the
intervention (Pocock, 1984). In clinical research, randomization protects
against selection bias in treatment assignment and minimizes the differences
among groups by optimizing the likelihood of equally distributing people
with particular characteristics to the intervention and control arms of a trial.
In randomized experiments, ignoring important covariates, which can lead
to differences between the groups, simply increases the standard errors; how-
ever, in observational studies, bias can result and the standard errors are
underestimated.
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There are several different randomization methods (Friedman, Furberg,
and DeMets, 1996). Some of these procedures are designed to ensure bal-
ance among intervention groups with respect to important prognostic fac-
tors, and thus, the probability of assignment to a particular intervention may
change over the course of the trial. Thus, randomization does not always
imply that an individual participant has a 50 percent chance of being as-
signed to a particular intervention.

Clinical trials can use either randomized controls or nonrandomized con-
trols. In a trial with nonrandomized controls, the choice of intervention
group and control group is decided deliberately. For example, patients with
a specific disease characteristic are assigned to the experimental interven-
tion, whereas those with another disease characteristic are assigned to the
control arm. On scientific grounds it is easy to conclude that the use of a
randomized control group is always preferred. The consensus view among
clinical investigators is that, in general, the use of nonrandomized controls
can result in biased and unreliable results (Pocock, 1984). Randomization in
combination with masking helps to avoid possible bias in the selection of
participants, their assignment to an intervention or control, and the analysis
of their response to the intervention.

Outcomes

The health outcomes assessed are pivotal for both the scientific and
substantive credibilities of all trials—–and are even more pivotal for small
trials. The selection of outcomes should meet the guidelines for validity
(Tugwell and Bombardier, 1982). In psychology, the concepts of validity and
reliability have been developed with the view that measurement is mainly
done to discriminate between states and to prognosticate from a single mea-
surement. For example, an intelligence test can be administered to children
at the end of their primary school years to suggest the needed level of sec-
ondary education. In clinical trials, however, measurement of change (e.g.,
to monitor the effect of treatment) is the objective. Thus, the concept of
responsiveness or sensitivity to change becomes important, but its nomen-
clature and methodology have not been well developed. In the selection of
outcome measures, validity is not the only issue—feasibility also determines
which of the valid outcome measures can actually be applied. The most
important criteria for selecting an endpoint include truth, discrimination
and feasibility (Boers, Brooks, Strand, et al., 1998, 1999).
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• Truth. Truth captures issues of fact, content, construct, and criterion
validity. For example, is the measure truthful, does it measure what is in-
tended? Is the result unbiased and relevant?

• Discrimination. Discrimination captures issues of reliability and re-
sponsiveness or sensitivity to change. For example, does the measure dis-
criminate between situations of interest? The situations can be states at one
time (for classification or prognosis) or states at different times (to measure
change).

• Feasibility. Feasibility captures an essential element in the selection
of measures, one that may be decisive in determining a measure’s success.
For example, can the measure be applied easily, given constraints of time,
money, and interpretability?

Subject Populations

Any clinical trial design requires precision in the process by which par-
ticipants are determined to be eligible for inclusion. The objective is to en-
sure that participants in a clinical trial are representative of some future class
of patients or individuals to whom the trial’s findings might be applied
(Pocock, 1984). In the early phases of clinical trial development, research
participants are often selected from a small subgroup of the population in
which the intervention might eventually be used. This is done to maximize
the chance of observing the specific clinical effects of interest. In these early
stages it is sometimes necessary to compromise and study a somewhat less
representative group (Pocock, 1984). Similarly, preliminary data collected
from one population (e.g., from studies of bone mineral density loss in
ground-based study participants) may not be generalizable to a particular
target population of interest (astronauts).

Sample Size and Statistical Power

Numerous methods and statistical models, often called “power calcula-
tions,” have been developed to calculate sample sizes (Kraemer and
Thiemann, 1987) (see also Chapter 3). A standard approach asks five ques-
tions:

1. What is the main purpose of the trial?
2. What is the principal method of assessing patient outcomes?
3. How will the data be analyzed to detect treatment differences?
4. What results does one anticipate with standard treatment?
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5. How small a treatment difference is it important to detect, and with
what degree of certainty should that treatment difference be demonstrated?

Statistical methods can then be developed around qualitative or quanti-
tative outcomes. A critical aspect of trial design is to first make use of statis-
tical methods to determine the population size needed to determine the fea-
sibility of the clinical trial. The number of participants in a clinical trial
should always be large enough to provide a sufficiently precise answer to the
question posed, but it should also be the minimum necessary to achieve this
aim.

A trial with only a small number of participants carries a considerable
risk of failing to demonstrate a treatment difference when one is really
present (Type II error) (see the Glossary for explanations of Type I and Type
II errors). In general, small studies are more prone to variability and thus are
likely to be able to detect only large intervention effects with adequate statis-
tical power.

Components of Variance

Variance is a measure of the dispersion or variation of data within a
population distribution. In the example of the effects of microgravity on
bone mineral density loss during space travel (see Box 1-2), there is a ten-
dency to assume that the astronaut is the unit of analysis and hence to focus
on components of variance across astronauts. However, given that astro-
nauts comprise a small group of individuals and do not represent a larger
population, there is a great likelihood that the data distribution will be less
of a Gaussian (or a “normal”) distribution. In this case, it becomes impor-
tant to consider the other components of variance in addition to the among-
person variance.

In a study of bone mineral density loss among astronauts, the compo-
nents of variance may include:

1. variation in bone mineral density across time for a single astronaut on
Earth or in microgravity;

2. differences in bone mineral density for that astronaut on Earth and
after a fixed period of time in microgravity; and

3. differences in bone mineral density among astronauts both on Earth
and in microgravity.

The goal would be to characterize changes for an individual astronaut
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or a small group of astronauts, even though they do not perfectly represent a
large population. It is reasonable to focus on true trends for a particular
astronaut over time, which requires careful repeated measurements over time
and which makes relevant the component of variance within a person rather
than the component of variance among persons.

Significance Tests

Significance tests (e.g., chi-square and t tests) are used to determine the
chances of finding a treatment difference as large as the effect observed by
chance alone; that is, how strong is the evidence for a genuine superiority of
one intervention over another (see also Chapter 3). However, statistical sig-
nificance is not the same as clinical or societal significance. Clinical or soci-
etal significance (relevance) must be assessed in terms of whether the magni-
tude of the observed effect is meaningful in the context of established clinical
practice or public health. An increase of risk from 1 in 10 to 2 in 10 has a
clinical implication different from that of an increase of 1 in 10,000 to 2 in
10,000, even though the risk has doubled in each case.

In hypothesis testing, the null hypothesis and one’s confidence in either
its validation or refute are the issue:

The basic overall principle is that the researcher’s theory is considered false
until demonstrated beyond reasonable doubt to be true… This is expressed as
an assumption that the null hypothesis, the contradiction of the researcher’s
theory, is true… What is considered a “reasonable” doubt is called the signifi-
cance level. By convention in scientific research, a “reasonable” level of remain-
ing doubt is one below either 5% or 1%. A statistical test defines a rule that,
when applied to the data, determines whether the null hypothesis can be re-
jected… Both the significance level and the power of the test are derived by
calculating with what probability a positive verdict would be obtained (the null
hypothesis rejected) if the same trial were run over and over again (Kraemer
and Thiemann, 1987, pp. 22–23).

A clinical trial is often formulated as a hypothesis as to whether an ex-
perimental therapy is effective. However, confidence intervals may provide
a better indication of the level of uncertainty. In the clinical trial setting, the
hypothesis test is natural, because the goal is to determine whether an ex-
perimental therapy should be used. In clinical trials, confidence intervals are
used in the same manner as hypothesis tests. Thus, if the interval includes
the null hypothesis, one concludes that the experimental therapy has not
proved to be more effective than the control.

To obtain the significance level, hypothetical repeats of trials are done
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when the null hypothesis is taken to be true. To obtain power, repeat tests
are done when the alternative hypothesis is correct. To compute power, the
researcher must have developed from preliminary data a critical-effect size,
that is, a measure of how strong the theory must minimally be to be impor-
tant to the individual being offered the therapy or important to society
(Kraemer and Thiemann, 1987, p. 24). Changing designs or measures used
or choosing one valid test over another changes the definition of effect size.
Moreover, the critical-effect size is individual- or population-specific as well
as measurement-specific (Kraemer and Thiemann, 1987).

TRADITIONAL CLINICAL TRIAL DESIGNS

Modern clinical trials go back more than 40 years, and a wide variety of
clinical trial designs have been developed and adapted over the past 25 years.
To the extent possible, each of these designs uses the concepts of control
and randomization to make comparisons among groups (Box 2-2). Some of
these designs, which are generally used in larger studies, can also be adapted
for use in some small studies. For example, crossover designs can be used in
small clinical studies and can be used in within-subject trials. Each is de-
scribed below.

Parallel-Group Design

The most common clinical trial design is the parallel-group design, in
which participants are randomized to one of two or more arms (Pocock,
1984). These arms include the new intervention under investigation and one
or more control arms, such as a placebo control or an active control. The
randomized parallel-group design is typically used to evaluate differences in

BOX 2-2
Traditional Designs for Clinical Trials

Parallel-group design
Crossover design
Factorial design
Add-on design
Randomized withdrawal design
Early-escape design
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the effects of different interventions across time. Trials that use the parallel-
group design are often double blinded. Because of the improved ability to
control for bias through randomization and blinding, the analysis of such
trials and the interpretation of their results are generally straightforward.

Crossover Design

The crossover design compares two or more interventions by randomly
assigning each participant to receive the interventions being tested in a dif-
ferent sequence. Once one intervention is completed, participants are
switched to another intervention. For example, in a two-by-two crossover
design, each participant randomly receives one drug for one period of time
and then another drug for a second period of time, with the administration
of each drug separated by a washout period (i.e., a period of time during
which the first drug is cleared from the body before the second drug is
administered). With this type of study, each participant serves as his or her
own control. There are several advantages to this trial design, including a
reduction in the number of participants required to achieve a statistically
significant result and the ability to control for patient specific effects. This
design can also be useful for studying a patient’s response to short periods of
therapy, particularly for chronic conditions in which the initial evaluation of
treatment efficacy is concerned with the measurement of short-term relief of
symptoms (Pocock, 1984).

A criticism of this design is that the effects of one intervention may carry
over into the period when the next intervention is given. Crossover studies
cannot be done if the effects of the interventions are irreversible (e.g., gene
therapy or surgery) or the disease progression is not stable over time (e.g.,
advanced cancer). Additional problems with crossover studies occur if par-
ticipants withdraw from the study before they receive both interventions or
the outcomes are affected by the order in which the interventions are admin-
istered (Senn, 1993).

Crossover designs are occasionally used in psychological studies because
of the opportunity to use each patient at least twice and because of the prob-
ability that the component of the variance within individual patients is
smaller than between patients (Matthews, 1995).

Factorial Design

In a factorial design, two or more treatments are evaluated simulta-
neously with the same participant population through the use of various
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combinations of the treatments. For example, in a two-by-two factorial de-
sign, participants are randomly allocated to one of the four possible combi-
nations of two treatments, treatments A and B: treatment A alone, treatment
B alone, both treatments A and B, or neither treatment A nor treatment B.
The usual intention of using this design is to make efficient use of clinical
trial participants by evaluating the efficacies of the two treatments with the
same number of participants that would be required to evaluate the efficacy
of either one alone. The success of this approach depends on the absence of
any relevant interaction between treatments A and B so that the effect of
treatment A is virtually identical whether or not treatment B is administered.
This design can also be used to test the interaction of treatments A and B,
but then, the advantages of efficiency no longer apply because much larger
trials are necessary to detect a clinically relevant interaction.

The factorial design can also be used to establish the dose-response char-
acteristics of a combination product, for example, one that combines treat-
ments C and D. Different doses of treatment C are selected, usually includ-
ing a dose of zero (placebo), and similar doses of treatment D are also chosen.
Participants in each arm of the trial receive a different combination of doses
of treatments C and D. The resulting estimate of the response may then be
used to help to identify an appropriate combination of doses of treatments
C and D for clinical use.

Add-on Design

In an add-on design, a placebo-controlled trial of an experimental inter-
vention is tested with people already receiving an established, effective treat-
ment. Thus, all participants receive the established, effective treatment. The
add-on design is especially useful for the testing of experimental interven-
tions that have a mechanism of action different from that of the established,
effective treatment. Experimental interventions for patients with acute myo-
cardial infarctions and, increasingly, patients with rheumatoid arthritis, for
example, are often tested in studies with this design. The add-on design is
the only one that can be used in long-term studies of treatments for heart
failure since standard therapy is lifesaving and cannot be denied (Temple,
1996). However, the add-on design is most useful for the testing of experi-
mental interventions that have mechanisms of action different from that of
the established, effective treatment.



40 SMALL CLINICAL TRIALS: ISSUES AND CHALLENGES

Randomized Withdrawal Design

In a randomized withdrawal design, individuals who respond positively
to an experimental intervention are randomized to continue receiving that
intervention or to receive a placebo. This trial design minimizes the amount
of time that individuals receive a placebo (Temple, 1996). During the trial,
the return of symptoms or the ability to continue participation in the trial
are study endpoints (Temple, 1996). The advantages of this study design are
that individuals receiving the experimental intervention continue to do so
only if they respond, whereas individuals receiving the placebo do so only
until their symptoms return. Disadvantages include carryover effects, diffi-
culties assessing whether the underlying disease process is still active, and
long lag times to adverse events if the disease is in remission. This design is
more appropriate in phase I and II trials involving healthy volunteers be-
cause it is less likely that effective treatments are being withdrawn from those
who need it. In some studies, however, measurement of the placebo effect is
essential (e.g., studies of drugs for the treatment of depression), and such
studies might require the use of a randomized withdrawal design. In those
cases, voluntary, informed consent is essential, as is the provision of care
during the withdrawal period.

Early-Escape Design

The early-escape design is another way to minimize an individual’s dura-
tion of exposure to a placebo. In the early-escape design, participants are
removed from the study if symptoms reach a defined level or they fail to
respond to a defined extent. The failure rate can then be used as the mea-
sure of efficacy. Thus, in a study with an early-escape design, participants are
only briefly exposed to ineffective interventions (Temple, 1996).

Multicenter Trials

Multicenter trials, although not a traditional design, provide an efficient
way of establishing the efficacy of a new intervention; however, certain cave-
ats must be noted. Sometimes multicenter trials provide the only means of
accruing a sample of sufficient size within a reasonable time frame. Another
advantage of multicenter trials is that they provide a better basis for the
subsequent generalization of findings because the participants are recruited
from a wider population and the treatment is administered in a broader
range of clinical settings. In this sense, the environment in which a
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multicenter trial is conducted might more truly represent the environment
for future uses of the test intervention. On the other hand, multicenter trials
may require the use of multiple standards and quality control.

SPECIAL DESIGN ISSUES FOR SMALL TRIALS

A number of trial designs especially lend themselves to studies with small
numbers of participants, including single subject (n-of-1) designs, sequen-
tial designs, decision analysis-based designs, ranking and selection designs,
adaptive designs, and risk-based allocation designs (Box 2-3).

Conducting Randomized Trials with Individual Patients

Clinicians are often faced with treatment decisions when they cannot
rely on the results of an RCT because the results do not apply to that patient
or a relevant trial might not yet have been done. In this case, the clinician
might opt for a “trial of therapy”; that is, the clinician might administer
more than one treatment to a patient to assess the effects (Guyatt, Sackett,
Adachi, et al., 1988). Trials with this type of design (referred to as a trial with
an n-of-1 design) have a long tradition in the behavioral sciences and have
more recently been used in clinical medicine (Johannessen, 1991). Trials
with such designs can improve the certainty of a treatment decision for a
single patient; a series of trials with such designs may permit more general
inferences to be drawn about a specific treatment approach (Johannessen,
1991). They also become useful when a population is believed to be hetero-
geneous. The central premise of trials with such designs is that the patient
(e.g., an astronaut) serves as his or her own control.

The factors that can mislead physicians conducting conventional thera-
peutic trials—the placebo effect, the natural history of the illness, and ex-

BOX 2-3
Special Design Issues for Small Clinical Trials

n-of-1 design
Sequential design
Decision analysis-based design
Ranking and selection design
Adaptive design
Risk-based allocation design
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pectations about the treatment effect—can be avoided in trials of therapy
with n-of 1-designs by safeguards that permit the natural, untreated course
of the disorder to be observed and by keeping the patient and the clinician
blind to the timing of active treatment.

Guyatt and colleagues (1988) describe one method of conducting an
RCT with an n-of-1 design:

• A clinician and a patient agree to test a therapy (the “experimental
therapy”) for its ability to reduce or control the symptoms, signs, or other
manifestations (the “treatment targets”) of the patient’s ailment.

• The patient then undergoes treatment for a pair of periods; during
one period of each pair the experimental therapy is applied, and during the
other period either an alternative treatment or a placebo is applied. The
order of the two periods within each pair is randomized by a method that
ensures that each period has an equal chance of applying the experimental
or the alternative therapy.

• Whenever possible both the clinician and the patient are blind to the
treatment being given during either period.

• The treatment targets are monitored (often through the use of a pa-
tient diary) to document the effect of the treatment being applied.

• Pairs of treatment periods are replicated until the clinician and the
patient are convinced that the experimental therapy is effective, is harmful,
or has no effect on the treatment targets.

RCTs with n-of 1 designs may be indicated if an RCT has shown that
some patients are unresponsive to treatment, if there is doubt about whether
a treatment is really providing a benefit to a particular patient; when the
patient insists on taking a treatment that the clinician thinks is useless or
potentially harmful, when a patient is experiencing symptoms suspected to
be medication side effects but neither the patient nor the clinician is certain,
and when neither the clinician nor the patient is confident of the optimal
dose of a medication or replacement therapy (Edgington, 1996). In addi-
tion, RCTs with n-of-1 designs are most useful for the study of treatments
for chronic conditions for which maintenance therapy is likely to be contin-
ued for long periods of time and if the treatment effect occurs soon after the
initiation of treatment and ceases soon after the withdrawal of treatment.
Trials with n-of 1 designs are also attractive for the study of vaguely defined
or heterogeneous conditions (Table 2-2). For patients with these conditions,
studies with n-of-1 designs may generate new hypotheses for the design of
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subsequent conventional group trials and can bridge the gap between re-
search and clinical practice (Johannessen, 1991).

One concern about trials with n-of-1 designs is whether clinically rel-
evant targets of treatment can be measured. Outcome measures often ex-
tend beyond a set of physical signs (e.g., the rigidity and tremor of parkin-
sonism), laboratory tests (e.g., measurement of blood glucose levels), or a
measure of patient performance (e.g., score on a 6-minute walking test).
Thus, in most situations it is preferable to directly measure a patient’s symp-
toms, well being, or quality of life. The measurement of a patient’s symp-
toms may also include the side effects of treatment (Guyatt, Sackett, Adachi,
et al., 1988).

One of the advantages to not specifying the number of pairs of treat-
ment periods in advance is that the trial can be stopped at any time. If, on
the other hand, one wishes to conduct a standard statistical analysis of data
(e.g., a frequentist or a Bayesian analysis), the analysis will be strengthened
considerably if the number of pairs is specified in advance. Regardless of
whether the number of treatment periods is specified in advance, it is advis-
able to have at least two pairs of treatment periods before breaking the trial
(Guyatt, 1986). Conclusions drawn after a single pair of treatments are likely
to be either false positive (that the treatment is effective when it is not) or
false negative (that the treatment is not effective when it is). Moreover, a

TABLE 2-2  Considerations in Performing a Trial with an n-of-1 Design

Is the condition chronic?
Is the condition stable over time?
Is there a carryover effect?
Is there a period effect?
Do the effects of the treatments have a rapid onset or a rapid cessation?
Are good measures available for the evaluation of the response?
Is a blinded trial feasible?
Is treatment effectiveness uncertain for the individual?
Is long-term therapy being considered?
Is the optimal dose known?
Is treatment timing feasible?
Is the patient interested in participating in a trial with an n-of-1 design?
Is the trial feasible in the clinician’s practice?
Is the trial ethical?

SOURCE: Zucker (2000).
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positive effect of treatment in one patient is not a reliable predictor of the
responses in future patients.

A preliminary treatment period with active therapy, during which both
the clinician and the patient know that active therapy is being received, could
save time. If there is no evidence of a response during such an open trial or if
intolerable side effects occur, an RCT with an n-of-1 design may be mean-
ingless or impossible. An open preliminary treatment period may also be
used to determine the optimal dose of the medication to be used in the trial.

If requirements similar to those required for conventional group tri-
als—strict entry criteria, uniform treatment procedures, consensus scales for
outcome measures, and acceptable statistical tests—are applied to a series of
trials with n-of-1 designs, conclusions may be generalizable to the target
population (Johannessen, 1991; Zucker, Schmid, McIntosh, et al., 1997).
This has the advantage that the patients are exposed to placebo only for as
long as is needed to get an answer both for the patients and for the main
population database.

A repeated-measures design is likely to be very useful in small studies.
The extreme of a small repeated-measures design is the study with an n-of-1
design. At the design phase of a study with a repeated-measures design, the
correlation structure of the measures is an important parameter. One would
need to explore the feasibility (i.e., the statistical power) of the study under
several different assumptions about the correlation structure.

Sequential Designs

In a study with a sequential design, participants are sequentially en-
rolled in the study and are assigned a treatment (assignment is usually at
random). The investigator then changes the probabilities that participants
will be assigned to any particular treatment on the basis of as they become
available. The object is to improve the efficiency, safety, or efficacy of the
experiment as it is in progress by changing the rules by which one deter-
mines how participants are allocated to the various treatments.

Strategies for sequential dose-response designs include up-and-down
methods, stochastic approximation methods, maximum-likelihood methods,
and Bayesian methods. Recently, attention has been focused on the con-
tinual reassessment methods which is a Bayesian sequential design (Durham,
Flournoy, and Rosenberger, 1997). Random-walk rules are particularly at-
tractive for use in the design of dose-response studies for several reasons:
exact finite and asymptotic distribution theory is completely worked out,
which allows the experimenter to choose design parameters for the most
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ethical allocation scheme; specific designs can be chosen that allow the cho-
sen design points to be distributed unimodally around a quantile of interest;
the designs are very simple to implement; and the designs operate on a finite
lattice of dosages (Durham, Flournoy, and Rosenberger, 1997). Random-
walk rules identify a class of rules for which the sample paths form random
walks. Thus, if there is a fixed probability of transitioning from state A to
state B and another fixed probability of transitioning from state B to state A
in a two-state process (a Markov chain), then sequences of states such as A,
B, B, A, B,… are random walks. A rule such as “stop the first time that the
total number of A’s or B’s reaches a prespecified number” would be called a
random-walk rule.

One example of sequential design is called the “up-and-down design”
(Dixon and Mood, 1948), in which the choices of experimental treatment
either go up one level (dose), down one level (dose), or stay unchanged. The
design allocates treatments to pairs of participants in a way that causes the
treatment distribution to cluster around the treatment with a maximum
probability of success (Dixon and Mood, 1948; Kpamegan and Flournoy,
2001). An up-and-down design has some advantages in clinical trials, in that
it allows more conservative movement across a range of treatments. To opti-
mize an up-and-down design, one treats individuals in pairs, with one re-
ceiving the lower-dose treatment and the other receiving the higher-dose
treatment. If the lower-dose treatment results in a treatment failure and the
higher-dose treatment results in a treatment success, the doses of the treat-
ment are increased for the next pair. Conversely, if the patient with the lower-
dose treatment has a treatment success and the patient with the higher-dose
treatment has a treatment failure, then the doses of the treatment are de-
creased for the next pair. In this simple model, if there are two treatment
successes or two treatment failures, the study is stopped. This design allows
early estimations of the effective dosage range to be obtained before investi-
gators proceed with large-scale randomized trials (Flournoy, in press).

Sequential group designs are useful for the monitoring and accumula-
tion of study data, while they preserve the Type I error probability at a de-
sired significance level, despite the repeated application of significance tests
(Kim and DeMets, 1992). Parallel-groups are studied until a clear benefit is
seen or it is determined that no difference in treatments exists (Lai, Levin,
Robbins, et al., 1980; Whitehead, 1999). The sequential group design allows
results to be monitored at specific time intervals throughout the trial so that
the trial may be stopped early if there is clear evidence of efficacy. Safety
monitoring can also be done, and trials can be stopped early if unacceptable
adverse effects occur or if it is determined that the chance of showing a
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clinically valuable benefit is futile. Because there is a need in all clinical tri-
als—as dictated by ethical requirements—to assess results throughout the
course of the trial, there is a potential that the blind will be broken, depend-
ing on how the results are assessed and by whom.

The disadvantage of this approach is that in most trials patients are het-
erogeneous with respect to the important prognostic factors, and these meth-
ods do not protect against the introduction of bias as a result of changes in
the types of patients entering into a clinical trial over time. Moreover, for
patients with chronic diseases, responses are usually delayed so long that the
advantages of this approach are often lost.

Decision Analysis-Based Design

Decision analysis (Pauker, 2000) can be informative in the experimental
design process. Modeling of a clinical situation a priori allows testing of
variables, which allows determination of the potential impact of each vari-
able on the decision. Framing the question starts the decision analysis-based
design process.

One explicitly considers both decision (e.g., intervention A or interven-
tion B) and probabilistic events (e.g., side effect versus no side effect). A
utility is assigned to each outcome. Utilities have numeric values, usually
between 0 and 1, that reflect the desirability of an outcome; that is, they
incorporate the weighting of the severity or importance of the possible ad-
verse outcomes as well as the weighting of the severity or importance of the
beneficial outcomes (Drummond, O’Brien, Stoddart, et al., 1997). Decision
analysis combines the probability of each outcome with the utility to calcu-
late an expected utility for each decision.

During the planning phase for a study, decision analysis is used to struc-
ture the question. One obtains (either from data or from expert opinion)
best estimates for each probability and utility. One then varies potential im-
portant values (either probability or utility) over a likely range. This process,
known as “sensitivity analysis,” allows the design group to determine if the
decision is sensitive to that value. Thus, decision analysis can direct small
trials to focus on these important variables. The integrity of an analysis de-
pends both on the values and on the model’s structure. One should make
both values and structure available for evaluation. One can use the process
of varying the value assumptions (known as sensitivity analysis) to determine
if a value’s precision would change one’s decision. It is important to recog-
nize, however, that decision analysis is dependent on the assumptions made
about parameter values and model structure. Reviews of decision analyses
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should include careful critique of the model structure. (See Chapter 3 for a
further discussion and an example of decision analysis.)

Ranking and Selection Design

Selection problems pervade the conduct of clinical trials. Statisticians
can provide rational procedures for selection of the best of several alterna-
tives. The formulation of the goal for the statistical significance of a trial
influences sample size in a substantial way. The hypothesis test has been the
predominant formulation used in the design of large-scale, randomized tri-
als, but other paradigms deserve careful consideration, especially in situa-
tions with small sample sizes. One such paradigm is ranking and selection.
Ranking and selection procedures are statistical techniques for comparison
of the parameters for multiple study (k) populations under the assumption
that these parameters are not all the same (Gibbons, Olkin, and Sobel, 1979).
The methods, known generally as ranking and selection procedures, include
techniques appropriate for the achievement of many different goals, al-
though a careful formulation of the corresponding problem is needed for
each goal. Suppose there are k populations and that each population is char-
acterized by a parameter. For example, the k populations are normally dis-
tributed with different means and a common variance. In this context, popu-
lations for which mean values are large are preferable to populations for
which mean values are small. For any given set of k populations, some of the
goals that can be accomplished by these methods are

1. selection of the one best population;
2. selection of a random number of populations such that all popula-

tions better than a control population or a standard are included in the
selected subset;

3. selection of the t best populations for t ≥ 2 (a) in an ordered manner
or (b) in an unordered manner;

4. selection of a random number of populations, say r, which includes
the t best populations;

5. selection of a fixed number of populations, say r, which includes the t
best populations;

6. ordering of all the k populations from best to worst (or vice versa); or
7. ordering of a fixed-size subset of the populations from best to worst

(or vice versa) (Gibbons, Olkin, and Sobel, 1979).

Ranking and selection procedures are particularly appropriate for an-
swering questions such as the following (Gibbons, Olkin, and Sobel, 1979):
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• Which one of λ different drugs produces the best response?
• Which subgroup of the λ drugs produces a better response than a

placebo?
• Which two of α types of advertising media reach the largest propor-

tion of potential buyers of a particular product?
• Which one of β different learning techniques produces the best com-

prehension?

Instead of formulating the goal of a trial as the definitive rejection of a
null hypothesis when it is false (with a high degree of statistical power) while
limiting its rejection when it is true (at a given level of a Type I error rate) in
planning a selection trial a clinician might reason as explained in Box 2-4.

A related goal is to rank three or more treatments in order of prefer-
ence. Methods for ranking and selection lend themselves naturally to
sequentialization. Sequential selection procedures can further reduce the
sample size required to select the best of two or more treatments (Levin and
Robbins, 1981). One of the ways in which ranking and selection methods
can be of help in a process is by ruling out poor competitors. Suppose that
investigators must choose the best of five interventions. With small sample
sizes the investigators may not be able to choose the best but might be able

BOX 2-4
Example of a Selection Trial

Over the course of the coming year, a clinician will have N patients to treat with
disease D. The clinician can treat these patients with therapy A or therapy B, but it is
unclear which therapy is better. One thing is clear, however: the clinician must treat all
patients with one or the other therapy and is willing to conduct a trial in which the goal
is, ideally, to select the truly superior treatment. If the two treatments are in truth equally
effective (with other factors such as cost and side effects being equal), the clinician
should be indifferent to which therapy is selected. If one treatment is sufficiently better
than the other, however, the clinician wants a high degree of probability that he or she
will select the superior treatment.

In other words, the traditional hypothesis test is used for the formulation of confir-
matory trials, but a selection trial identifies for further use a therapy that is sufficiently
superior with a guaranteed high degree of probability. On the other hand, if the ther-
apies are essentially equivalent, the goal is to be able to select either therapy. Because
it is possible to view such selection trials as equivalent to classical hypothesis testing
with a Type I error rate of 0.5 (rather than a Type I error rate of 0.05), it can be seen
that selection trials generally require much smaller sample sizes than those required for
the usual confirmatory trial. Note that this is not a way of cheating but is an explicit
decision to acknowledge the importance of the selection paradigm over the definitive
or confirmatory hypothesis test paradigm.
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to assert that the best is among a group of three of the interventions, al-
though they are not sure which one is the best. Subsequent studies can then
focus on choosing the best of the three interventions.

A key criterion in selection trials is the probability of selection of the
“correct” treatment. Even more intriguing criteria have been proposed for
the selection of a superior treatment. In a review of the second edition of
Peter Armitage’s book Sequential Medical Trials, Frank Anscombe intro-
duced what has been called the “ethical cost” function, which considers the
number of inferior treatments and the severity of such treatments errors
(Lai, Levin, Robbins, et al., 1980).

Consider again the finite patient horizon of N patients to be treated over
the course of a given time period. Suppose n pairs of patients (for a total of
2n patients) are to be considered in the trial phase, with treatment A or
treatment B randomly allocated within pairs. After the trial phase, the re-
maining N – 2n patients will all be given the apparently superior treatment
identified in the trialphase. The ethical cost function is the total number of
patients given the truly inferior treatment multiplied by the magnitude of
the treatment efficacy difference. If (AD) denotes the absolute difference in
average endpoint levels between the two treatments, then the ethical cost is
(AD)n if the truly superior treatment is selected in the trial phase and (AD)(N
– n) if the truly superior treatment is not selected.

It is simple to implement a sequential version of the trial phase; it also
has the virtue of achieving a substantially lower average ethical cost than
that which can be achieved with a fixed sample size in the trial phase. A
surprising feature of a large class of reasonable sequential stopping rules for
the trial phase is that they can reduce the average ethical cost for a fixed
sample size, even when the ethical cost is optimized for a given value of
(AD). For example, one such rule will reach a decision in the trial phase in
which n is no more than one-sixth of N. The main point for consideration in
small trials, however, is that it may not be obvious how one rationalizes the
trade-off between the number of patients put at risk in the trial and an ulti-
mately arbitrary Type I error rate in a conventional trial. On the other hand,
it may be much more desirable to design a selection trial with an ethical cost
function that directly incorporates the number of patients given inferior
treatment.

Adaptive Design

Adaptive designs have been suggested as a way to overcome the ethical
dilemmas that arise when the early results from an RCT clearly begin to
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favor one intervention over another. An adaptive design seeks to skew as-
signment probabilities to favor the better-performing treatment in a trial
that is under way (Rosenberger, 1996).

Adaptive designs are attractive to mathematicians and statisticians be-
cause they impose dependencies that require the full arsenal of techniques
and stochastic processes (Rosenberger, 1996). An assortment of adaptive
designs has been developed over the past few decades, including a variety of
urn models that govern the sampling mechanism. Adaptive design can be
associated with complex analytical problems. If the sample size is small
enough, an exact analysis by exhaustive enumeration of all sample paths is
one way to provide an answer. If the sample size is larger but still not large, a
Monte Carlo simulation can provide an accurate analysis. If the sample size
is large, then standard likelihood-based methods can be used. An example
of an adaptive design is described in Box 2-5.

A major advantage of adaptive design is that over time more patients
will be assigned to the more successful treatment. Stopping rules and data
analysis for these types of designs are complicated (Hoel, Sobel, and Weiss,
1975), and more research is needed in this area. As with sequential designs,
the disadvantage of adaptive designs is that in most trials, patients are het-
erogeneous with respect to the important prognostic factors, and these meth-
ods do not protect against bias introduced by changes in the types of pa-
tients entering into a trial over time. Morever, for patients with chronic
diseases, responses are usually delayed so long that the advantages of this
approach are often lost. Also, multiple endpoints are usually of interest, and
therefore, the entire allocation process should not be based on a single re-
sponse. Play-the-winner rules can be useful in certain specialized medical
situations in which ethical challenges are strong and one can be reasonably
certain that time trends and patient heterogeneity are unimportant. These

BOX 2-5
Play-the-Winner Rule as an Example of Adaptive Design

A simple version of a randomized version of the play-the-winner rule follows. An
urn contains two balls; one is labeled A and the other is labeled B. When a patient is
available for treatment assignment, a ball is drawn at random and replaced. If the ball
is type A, the patient is assigned to treatment A; if it is type B, the patient is assigned to
treatment B. When the results for a patient are available, the contents of the urn are
changed according to the following rule: if the result was a success, an additional ball
labeled with the successful treatment is added to the urn. If the result is a failure, a ball
with the opposite label is added to the urn (Zelen, 1969).
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rules can be especially beneficial when response times are short compared
with the times between patient entries into a study. An example of this is the
development of extracorporeal membrane oxygenation (Truog, 1992; Ware,
1989).

Risk-Based Allocation Design

Risk-based allocation, a nonrandomized design, has a very specific pur-
pose: to allow individuals at higher risk or with greater disease severity to
benefit from a potentially superior experimental treatment. Because the de-
sign is nonrandomized, its use should be considered only in situations in
which an RCT would not be possible.

For example, when a therapy is readily available outside the study pro-
tocol or when a treatment has been in use for a long time and is perceived to
be efficacious, even though it has never been subjected to a randomized
trial, a nonrandomized risk-based allocation approach may be useful. Bone
marrow transplantation for the treatment of advanced breast disease is an
illustration. A nationwide, multicenter randomized trial was designed to test
the efficacy of harvesting bone marrow before aggressive chemotherapy fol-
lowed by bone marrow transplantation with the patient’s own (autologous)
bone marrow for women with at least 10 axillary nodes with tumor involve-
ment. The comparison group received the standard therapy at that time
which omitted the bone marrow transplantation procedure. Bone marrow
transplantation was widely available outside the clinical trial, and women
were choosing that therapy in large numbers, drastically slowing patient en-
rollment in the trial. It took more than 7 years (between 1991 and 1998) to
achieve the target sample size of 982 women, whereas more than 15,000 off-
protocol bone marrow transplantation procedures were administered dur-
ing that time period. If only half of the women receiving off-protocol bone
marrow transplantation had been enrolled in the trial, the target sample size
would have been reached in less than 2 years. The difficulty was that when
participants were informed that they faced a 50 percent chance of being
randomized to the comparison group, they withheld consent to obtain bone
marrow transplantation elsewhere, often just across town. The final result of
the trial was that there was no survival benefit to this approach. A risk-based
allocation design might have reached the same conclusion much sooner, sav-
ing many women from undergoing a very painful, expensive, and, ultimately,
questionable surgical procedure.

Other examples of desperately ill patients or their caregivers seeking
experimental treatments and refusing to be randomized include patients with
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AIDS in the early days of trials of drugs for the treatment of human immu-
nodeficiency virus infection and caregivers of premature infants with extra-
corporeal membrane oxygenation. Other therapies, such as pulmonary ar-
tery (Swan-Ganz) catheter placement, estrogen treatment for Alzheimer’s
disease, or radical surgery for prostate cancer, have been nearly impossible
to test in randomized trials because participants, convinced of their thera-
peutic benefits, did not want to receive the placebo or the standard therapy.
These therapies have been cited in the news media because of the extreme
difficulty in recruiting participants into randomized trials of the therapies
(Altman, 1996; Brody, 1997; Kolata, 1995, 1997; Kolata and Eichenwald,
1999).

A risk-based allocation design attempts to circumvent these problems
by ensuring that all of the sickest patients will receive the experimental treat-
ment. The design is sometimes called an “assured allocation design”
(Finkelstein, Levin, and Robins, 1996a, b). It has also been called the “re-
gression-discontinuity design,” although that name presupposes a specific
statistical analysis that is not always appropriate.

The design has three novel features. First, it requires a quantitative mea-
sure of risk, disease severity, or prognosis, which is observed at or before
enrollment in the study, together with a prespecified threshold for receiving
the experimental therapy. All participants above the threshold receive the
experimental (new) treatment, whereas all participants below the threshold
receive the standard (old) treatment. The second novel feature of the risk-
based design is the goal of the trial: to estimate the difference in average
outcome for high-risk individuals who received the new treatment compared
with that for the same individuals if they had received the old treatment.

Thus, in the bone marrow transplantation example, women eligible for
the randomized trial had to have 10 or more nodes of involvement. In a risk-
based allocation trial, all of these high-risk women would have been given
bone marrow transplantation, whereas women with fewer affected nodes
would have been recruited and given the standard therapy. The treatment
effect to be estimated in the assured allocation design would be the survival
difference for women with at least 10 nodes given bone marrow transplanta-
tion compared with that for the same group of women if they had received
the standard therapy.

The risk-based allocation creates a biased allocation, and the statistical
analysis appropriate for estimation of the treatment effect is not a simple
comparison of the mean outcomes for the two groups, as it would be in a
randomized trial. One analytical method comes from the theory of general
empirical Bayes estimation, originally introduced by Herbert Robbins in the
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1950s in a series of landmark papers (Lai and Siegmund, 1985; Robbins,
1956, 1977). Robbins applied this approach first to estimation problems,
then to prediction problems, and later to risk-based allocation (Robbins,
1993; Robbins and Zhang, 1988, 1989, 1991). If one gives up randomization
(because the trial would be impossible to carry out), one needs another prin-
ciple to achieve a scientifically valid estimate of treatment effect. Therefore,
the third requirement of risk-based design is a model that can be used to
predict what outcomes the sicker patients would have had if they had been
given the standard treatment. A prototypic example of the appropriate sta-
tistical analysis required is shown in Box 2-6.

Thus, there is good rationale for using a risk-based allocation design to
compare the outcomes for high-risk patients who receive the new treatment
with the predicted outcome for the same patients if they had received the
standard therapy. One requires a model for the standard treatment (but only
the standard treatment) that relates the average or expected outcome to
specific values of the baseline measure of risk used for the allocation. Only
the functional form of the model, not specific values of the model param-
eters, is required. This is because the parameters used in the model will be
estimated from the concurrent control data, and extrapolated to the high-risk
patients. This is an advantage over historical controlled studies. One need
not rely on historical estimates of means or proportions of the expected
outcome, which are notoriously untrustworthy. All one needs to assume for
the risk-based design is that the mathematical form of the model relating
outcome to risk is correctly specified throughout the entire range of the risk
measure. This is a strong assumption, but with sufficient experience and
prior data on the standard treatment, the form of the model can be vali-
dated. In the same way that an engineer can build a bridge without being
completely agnostic about the laws of gravity and the tensile strength of
steel, so progress can be made without randomization if one has a model
that predicts the outcomes of a standard treatment. In addition, the validity
of the predictive model can always be checked against the concurrent con-
trol data in the risk-based trial.

The usual problem of extrapolation beyond the range of data does not
arise here for three reasons. First, one assumes that the mathematical form
of the model relating outcome to risk is correctly specified throughout the
entire range of the risk measure. If one does not know what lies beyond the
range of data, then extrapolation is risky. Thus, in this situation one should
assume a validated model for standard treatment that covers the whole range
of the risk measure, including data for those high-risk patients that form
part of the observed data. Estimation of the model parameters from a por-
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BOX 2-6
Example of General Empirical Bayes Estimation

Suppose one collects data on the number of traffic accidents that each driver in a
population of motorists had during a 1-year baseline period. Most drivers will have no
accidents, some will have one, some will have two, and so on. If one focuses on the
subgroup of drivers who had no accidents during the baseline period, one can then ask
the following question: assuming that traffic conditions and driving habits remain sta-
ble, how many accidents in total would the same drivers with no accident in the base-
line year be predicted to have in the next year? A model is needed to make a predic-
tion. A reasonable statistical model is that the number of accidents that a single driver
has in a 1-year period follows a Poisson distribution, the standard probability law
governing the occurrence of rare events. Subject-to-subject variability requires one to
assume that the mean value for a parameter according to a Poisson distribution (the
number of accidents expected per year) varies from driver to driver: some drivers have
very safe driving habits with a small expected number of accidents per year, whereas
others have less safe driving habits.

A key feature of a general empirical Bayes analysis is that no assumption about the
distribution of the Poisson mean parameters in the population of drivers needs be
made. In this case, the term “general empirical Bayes” does not mean empirical Bayes
generally but, rather, refers to the kind of empirical Bayes method that does not make
assumptions about the prior distribution (in contrast to the parametric variety used by
Robbins [1956]). Robbins proved that an unbiased and asymptotically optimal predic-
tor of the number of accidents next year by the drivers who had no accidents in the
baseline year is the number of drivers who had exactly one accident in the baseline
year. The proof of this assertion is based only on the assumption of the form of the
model for outcomes (Poisson distribution), without any parametric assumption about
how the model parameter is distributed among participants in the population. What is
amazing—and the reason that this example is presented—is that information about
one group of people (the drivers with no accidents) can be consistently and asymptot-
ically optimally predicted on the basis of information about an entirely different group
of people (the drivers with one accident), which is characteristic of empirical Bayes
methods. There is no question that the two groups are different: even though the groups
of drivers with no accidents includes some unsafe drivers who had no accidents by
good fortune, the drivers in that group are, nevertheless, safer drivers on average than
the drivers in the group with one accident, even though the latter group includes some
safe drivers who were unlucky. This illustrates that the complete homogeneity and com-
parability of two groups so avidly sought after in randomized comparisons is actually
not necessary to make valid comparisons, given adequate model assumptions and an
appropriate (not naïve) statistical analysis.

Finally, one can observe the number of accidents next year among those with no
accidents in the baseline year and compare that number with the predicted number
using a 95 percent prediction interval based on the baseline data. An approximate 95
percent prediction interval is given by 1.96 times the square root of twice the number
of drivers with either exactly one accident or exactly two accidents (Finkelstein and
Levin, 1990). If the observed number is found to differ markedly from the predicted
number, there are grounds to reject the starting assumption that driving conditions and
habits remained the same. See the section Statistical Analyses in Appendix A for fur-
ther discussion of risk-based allocation.
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tion of the data and then use of the model to predict responses for high-risk
patients is not equivalent to extrapolation of the data into some unknown
region of the sample data. Second, the model can be validated with the ob-
served data, which increases confidence in the model over the unobserved
data. Third, the effect of extrapolation is accurately reflected by the stan-
dard errors, but the effect is not some wild inflation into unknown territory.
This third assumption is an important one, and identification of the appro-
priate model must be accomplished before a risk-based trial can be under-
taken. Once the necessary model is developed, there are no other hidden
assumptions. The reliability of the available data is important to this ap-
proach.

A clinical example from Finkelstein, Levin, and Robbins (1996b) is given
in Box 2-7. That example uses a simple linear model to relate how much the
level of total serum cholesterol was reduced from the baseline to the end of
follow-up on the basis of a preliminary measurement of the cholesterol level
among a group of cholesteremic, sedentary men in the placebo arm of a
well-known randomized trial of the cholesterol-lowering compound
cholestyramine. If the trial had been designed as a risk-based allocation trial,
the actually observed lowering of the cholesterol level among the highest-
risk (the most cholesteremic) men given the active drug could have been
compared on the basis of a simple linear model with the lowering predicted

BOX 2-7
Potential Effectiveness of Replacing Randomized
Allocation with Risk-Based (Assured) Allocation

(in Which All Higher Risk Participants Receive the
New Treatment)

High levels of cholesterol (at least the low-density lipoprotein component) are gen-
erally regarded as a risk factor for heart disease. A primary prevention trial was
conducted in which 337 participants were randomly assigned to treatment arms to
evaluate the ability of cholestyramine to lower total plasma cholesterol levels. The group
with high cholesterol levels (> 290 mg/dl) had an average reduction of 34.42 mg/dl
with a treatment effect (the reduction in the cholestyramine-treated high cholesterol
subgroup minus the reduction in the high-cholesterol placebo controls) of 29.40 ± 3.77
mg/dl (standard error) (Lipid Research Clinical Program, 1984). The results also sug-
gest that the drug is less effective in absolute terms for participants with lower initial
total plasma cholesterol levels (<290 mg/dl). By applying a risk-based allocation mod-
el to the same data, the treatment effect is estimated for participants at higher risk
(>290 mg of total plasma cholesterol/dl) to be 30.76 ±8.02 mg/dl, which is close to
the result of the RCT of 29.40 mg/dl. Thus, for the high-risk patients, the results from the
trial with a risk-based allocation design are virtually identical to those of the trial with
the conventional design (Finkelstein, Levin, and Robbins, 1996b).
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for the same men while they were receiving a placebo. The example illus-
trates that the risk-based approach would have arrived at the same estimate
of treatment effect for those at higher risk as the RCT did.

Some cautions must be observed when risk-based allocation is used.
The population of participants entering a trial with a risk-based allocation
design should be the same as that for which the model was validated so that
the form of the assumed model is correct. Clinicians enrolling patients into
the trial need to be comfortable with the allocation rule, because protocol
violations raise difficulties just as they do in RCTs. Finally, the standard er-
ror of estimates will reflect the effect of extrapolation of the model predic-
tions for the higher-risk patients on the basis of the data for the lower-risk
patients. Because of this, a randomized design with balanced arms will have
smaller standard errors than a risk-based design with the same number of
patients. In the example of the study of cholestyramine in Box 2-7, the stan-
dard error was slightly more than doubled for the risk-based design than for
the randomized design.

What do these ideas have to do with small clinical trials? Consider the
example of bone mineral density loss among astronauts. An obvious risk
factor that correlates with bone mineral density loss is the duration of the
mission in space: the longer the mission, the greater the bone mineral den-
sity loss. What would be required in a risk-based study design is the math-
ematical form of this relationship for some standard countermeasures
(countermeasure is the term that the National Aeronautics and Space
Administration uses for a preventive or therapeutic intervention that miti-
gates bone mineral density loss or other physiological adaptations to long-
duration space travel). Astronauts who will be on extended future missions
on the International Space Station will be at higher-risk than those who have
shorter stays. If those on the longer missions (who are at higher risk) were to
receive new experimental countermeasures, their bone mineral density losses
could be compared on a case-by-case basis to a prediction of what their
bone mineral density loss would have been by use of the standard counter-
measures. Such comparisons of observed versus expected or predicted out-
comes are familiar in other studies with small sample sizes, such as studies
searching for associations of rare cancer with a variety of toxic exposures.

Finally, any trial conducted in an unblinded manner has a potential bias.
In some cases a trial with a risk-based allocation design need not be con-
ducted in an unblinded manner; for example, patients may be assured of
receiving an active experimental treatment together with a placebo standard
treatment if they are at high risk or a placebo experimental treatment to-
gether with an active standard treatment if they are lower risk. The trial may
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be conducted in a blinded manner if the risk measure is not obvious to the
patient. In many cases, however, the trial, such as a surgical intervention
trial, would have to be unblinded. The issue is nothing new. Solid endpoints
unaffected by investigator bias and careful protocols for permitted concomi-
tant behavior are the best safeguard in unblinded trials.

SUMMARY

Scientific research has a long history of well-established, well-docu-
mented, and validated methods for the design, conduct, and analysis of clini-
cal trials. A study design that is appropriate includes one with a sufficient
sample size and statistical power and proper control of bias to allow a mean-
ingful interpretation of the results. The committee strongly reaffirms that,
whenever feasible, clinical trials should be designed and performed so that
they have adequate statistical power.

When the clinical context does not provide a sufficient number of re-
search participants for a trial with adequate statistical power but the re-
search question has great clinical significance, the committee understands
that, by necessity for the advancement of human health, research will pro-
ceed. Bearing in mind the statistical power, precision, and validity limita-
tions of studies with small sample sizes, the committee notes that there are
innovative design and analysis approaches that can improve the quality of
such trials. In small clinical trials, it is more likely that the sample population
will share several unique characteristics, for example, disease, exposures, or
environment. Thus, it might be more practical in some small clinical trials
than in large clinical trials to involve the participants in the design of the
trial. By doing so, the investigator can increase the likelihood of compliance,
adherence to the regimen, and willingness to participate in monitoring and
follow-up activities. Investigators should also keep in mind opportunities
for community discussion and conversation during the conduct and plan-
ning of all trials. It is also important for investigators to consider confidenti-
ality and privacy in disseminating the results of studies whose sample popu-
lations are easily identified. Investigatiors should also keep in mind
opportunities for community discussion and consultation during the plan-
ning and conduct of all clinical trials.

RECOMMENDATIONS

Because of the constraints of trials with small sample sizes, for example,
trials with participants with unique or rare diseases or health conditions, it is



58 SMALL CLINICAL TRIALS: ISSUES AND CHALLENGES

particularly important to define the research questions and select outcome
measures that are going to make the best possible use of the available par-
ticipants while minimizing the risks to those individuals.

RECOMMENDATION: Define the research question. Before un-
dertaking a small clinical trial it is particularly important that the
research question be well defined and that outcomes and conditions
to be evaluated be selected in a manner that will most likely help
clinicians make therapeutic decisions.

RECOMMENDATION: Tailor the design. Careful consideration of
alternative statistical design and analysis methods should occur at all
stages in the multistep process of planning a clinical trial. When de-
signing a small clinical trial, it is particularly important that the statis-
tical design and analysis methods be customized to address the clini-
cal research question and study population.

Clinical researchers have proposed alternative trial designs, some of
which have been applied to small clinical trials. For a smaller trial, when the
anticipated effect is not great, researchers may encounter a difficult tension
between scientific purity or pragmatic necessity. One approach might be to
focus on a simple, streamlined hypothesis (not multiple ones) and choose
one means of statistical analysis that does not rely on any complicated mod-
els and that can be widely validated. An alternative approach is to choose a
model-dependent analysis, effectively surrendering any pretense of model
validation, knowing that there will not be enough information to validate
the model, a risk that could compromise the scientific validity of the trial.

The committee believes that the research base in this area requires fur-
ther development. Alternative designs have been proposed in a variety of
contexts; however, they have not been adequately examined in the context
of small studies.

RECOMMENDATION: More research on alternative designs is
needed. Appropriate federal agencies should increase support for ex-
panded theoretical and empirical research on the performances of
alternative study designs and analysis methods that can be applied to
small studies. Areas worthy of more study may include theory devel-
opment, simulated and actual testing including comparison of exist-
ing and newly developed or modified alternative designs and methods
of analysis, simulation models, study of limitations of trials with dif-
ferent sample sizes, and modification of a trial during its conduct.
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Because of the limitations of small clinical trials it is especially important
that the results be reported with accompanying details about the sample
size, sample characteristics, and study design. The details necessary to com-
bine evidence from several related studies, for example, measurement meth-
ods, main outcomes, and predictors for individual participants, should be
published. There are two reasons for this: first, it allows the clinician to
appropriately interpret the data within the clinical context, and second, it
paves the way for meta-analysis with other small clinical trials or other fu-
ture analyses of the study, for example, as part of a sequential design or
meta-analysis. In the clinical setting, the consequences might be greater if
one misinterprets the results. In the research setting, insufficiently described
design strategies and methods diminish the study’s value for future analyses.

RECOMMENDATION: Clarify methods in reporting of results of
clinical trials. In reporting the results of a small clinical trial, with its
inherent limitations, it is particularly important to carefully describe
all sample characteristics and methods of data collection and analysis
for synthesis of the data from the research.
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3
Statistical Approaches

to Analysis of
Small Clinical Trials

Anecessary companion to a well-designed clinical trial is its appro-
priate statistical analysis. Assuming that a clinical trial will produce
data that could reveal differences in effects between two or more

interventions, statistical analyses are used to determine whether such differ-
ences are real or are due to chance. Data analysis for small clinical trials in
particular must be focused. In the context of a small clinical trial, it is espe-
cially important for researchers to make a clear distinction between prelimi-
nary evidence and confirmatory data analysis. When the sample population
is small, it is important to gather considerable preliminary evidence on re-
lated subjects before the trial is conducted to define the size needed to deter-
mine a critical effect. It may be that statistical hypothesis testing is prema-
ture. Thus, testing of a null hypothesis might be particularly challenging in
the context of a small clinical trial. Thus, in some cases it might be important
to focus on evidence rather than to test a hypothesis (Royall, 1997). This is
because a small clinical trial is less likely to be self-contained, providing all
of the necessary evidence to effectively test a particular hypothesis. Instead,
it might be necessary to summarize all of the evidence from the trial and
combine it with other evidence available from other trials or laboratory stud-
ies. A single large clinical trial is often insufficient to answer a biomedical
research question, and it is even more unlikely that a single small clinical
trial can do so. Thus, analyses of data must consider the limitations of the
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data at hand and their context in comparison with those of other similar or
related studies.

Since data analysis for small clinical trials inevitably involves a number
of assumptions, it is logical that several different statistical analyses be con-
ducted. If these analyses give consistent results under different assumptions,
one can be more confident that the results are not due to unwarranted as-
sumptions. In general, certain types of analyses (see Box 3-1) are more ame-
nable to small studies. Each is briefly described in the sections that follow.

SEQUENTIAL ANALYSIS

Sequential analysis refers to an analysis of the data as they accumulate,
with a view toward stopping the study as soon as the results become statisti-
cally compelling. This is in contrast to a sequential design (see Chapter 2), in
which the probability that a participant is assigned to a particular interven-
tion is changed depending on the accumulating results. In sequential analy-
sis the probabilty of assignment to an intervention is constant across the
study.

Sequential analysis methods were first used in the context of industrial
quality control in the late 1920s (Dodge and Romig, 1929). The use of se-
quential analysis in clinical trials has been extensively described by Armitage
(1975), Heitjan (1997), and Whitehead (1999). Briefly, the data are analyzed
as the results for each participant are obtained. After each observation, the
decision is made to (1) continue the study by enrolling additional partici-
pants, (2) stop the study with the conclusion that there is a statistically sig-
nificant difference between the treatments, or (3) stop the study and con-
clude that there is not a statistically significant difference between the

BOX 3-1
Some Statistical Approaches to
Analysis of Small Clinical Trials

Sequential analysis
Hierarchical models
Bayesian analysis
Decision analysis
Statistical prediction
Meta-analysis and other alternatives
Risk-based allocation
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interventions. The boundaries for the decision-making process are con-
structed by using considerations of power and size needed to determine an
effect size similar to those used to determine sample size (see, for example
Whitehead [1999]). Commercially available software can be used to con-
struct the boundaries.

In sequential analysis, the final sample size is not known at the begin-
ning of the study. On average, sequential analysis will lead to a smaller aver-
age sample size than that in an equivalently powered study with a fixed-
sample-size design. This is a major advantage to sequential analysis and is a
reason that it should be given consideration when one is planning and ana-
lyzing a small clinical trial. For example, take the case study of sickle cell
disease introduced in Chapter 1 and consider the analysis of the clinical
design problem introduced in Box 1-4 as an example of sequential analysis
(Box 3-2).

Data from a clinical trial accumulate gradually over a period of time that
can extend to months or even years. Thus, results for patients recruited early
in the study are available for interpretation while patients are still being
recruited and allocated to treatment. This feature allows the emerging evi-
dence to be used to decide when to stop the study. In particular, it may be
desirable to stop the study if a clear treatment difference is apparent, thereby
avoiding the allocation of further patients to the less successful therapy. In-
vestigators may also want to stop a study that no longer has much chance of
demonstrating a treatment difference (Whitehead, 1992, 1997).

For example, consider the analysis of an intervention (countermeasure)
to prevent the loss of bone mineral density in sequentially treated groups of
astronauts resulting from their exposure to microgravity during space travel
(Figure 3-1). The performance index is the bone mineral density (in grams
per square centimeter) of the calcaneus. S refers to success, where p is the
probability of success and p* is the cumulative mean. F refers to failure,
where q is the probability of failure and q* is the cumulative mean. The
confidence intervals for p and q are obtained after each space mission, that
is, for p, (p1, p2), and for q, (q1, q2). The sequential accumulation of data then
allows one to accept the countermeasure if p1 is greater than p* and q2 is less
than q* or reject the countermeasure if p2 is less than p* or q1 is greater than
q*. Performance indices will be acceptable when success S, a gain or mild
loss, occurs on at least 75 percent (p* = 0.75) of the cases (astronaut mis-
sions) and when F, severe bone mineral density loss, occurs in no more than
5 percent (q* = 0.05) of the cases. Unacceptable performance indices occur
with less than a 75 percent success rate or more than a 5 percent failure rate.
As the number of performance indices increases, level 1 performance crite-



STATISTICAL  APPROACHES TO ANALYSIS OF SMALL CLINICAL TRIALS 63

BOX 3-2
Clinical Trial for Treatment of Sickle Cell Disease

Sickle Cell disease is a red blood cell (RBC) disorder that affects 1 in 200 African
Americans. Fifty percent of individuals living with sickle cell disease die before age 40.
The most common complications include stroke, renal failure, and chronic severe pain.
Patients who have a stroke are predisposed to having another one.

Mixed donor and host stem cell chimerism (e.g., the recipient patient has stem cells
of her or his own origin and also those from the transplant donor) is curative for sickle
cell disease. Only 20 percent of donor RBC production (and 80 percent of recipient
RBC production) is required to cure the abnormality. Conditioning of the recipient is
required for the transplanted bone marrow stem cells to become established. The de-
gree of HLA (human leukocyte antigen) mismatch as well as the sensitization state (i.e.,
chronic transfusion immunizes the recipient) influences how much conditioning is re-
quired to establish 20 percent donor chimerism.

In patients who have an HLA-identical donor and who have not been heavily trans-
fused, 200 centigrays (cGy) of total body irradiation (TBI) is sufficient to establish donor
engraftment (establish a cure). This dose of irradiation has been shown to be well
tolerated. In heavily transfused recipients who are HLA mismatched, more conditioning
will probably be required. The optimal dose of TBI for this cohort has not been estab-
lished. The focus of this study is to establish the optimum dose of TBI to achieve 20
percent donor cells (chimerism) in patients enrolled in the protocol.

How many patients must be enrolled per cohort to obtain durable bone marrow
stem cell establishment (engraftment)? Patients are monitored monthly for the level of
donor chimerism. Engraftment can be considered durable if 20 percent donor chimer-
ism is present at ≥6 months. When can TBI dose escalation be implemented? How
many patients are required per group before an increase in dose can be made?

Cohort Number of subjects needed TBI dose (cGy)

A to be determined (see below) 200
B “ 250
C “ 300
D “ 350

One traditional approach to this problem is to identify an acceptable engraftment
rate and to then identify the number of subjects required to ensure that the confidence
interval for the true proportion is sufficiently narrow to be protective of human health.
For example, if the desired engraftment rate is 95 percent, 19 subjects will provide a
95 percent confidence interval with a width of 10 percent (i.e., 0.85 to 1.00). If for a
particular application, this interval is too wide, a width of 5 percent can be obtained
with 73 subjects (0.90 to 1.00).

On the basis of these results, should 73 subjects be required for each TBI dose
group? Is a total of 292 patients really needed for all dose groups? The answer is that
a much smaller total number of patients is required by invoking a simple sequential
testing strategy. For example, assume that the study begins with three patients in the
lowest-dose group and it is observed that none of the patients are cured. On the basis
of a binomial distribution and by use of a target engraftment proportion of 0.95, the
probability that zero of three engraftments will be established when the true population

continues
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ria can be set; for example, S is equal to a gain or no worse than 1 percent
loss of bone mineral density relative to that at baseline. Indeterminate (I) is
equal to a moderate loss of 1 to 2 percent from that at the baseline. F is equal
to the severe loss of 2 percent or more from that at the baseline (Feiveson,
2000). See Box 1-2 for an alternate design discussion of this case study.

The use of study stopping (cessation) rules that are based on successive
examinations of accumulating data may cause difficulties because of the need
to reconcile such stopping rules with the standard approach to statistical
analysis used for the analysis of data from most clinical trials. This standard
approach is known as the “frequentist approach.” In this approach the analy-
sis takes a form that is dependent on the study design. When such analyses
assume a design in which all data are simultaneously available, it is called a
“fixed-sample analysis.” If the data from a clinical trial are not examined
until the end of the study, then a fixed-sample analysis is valid. In compari-
son, if the data are examined in a way that might lead to early cessation of
the study or to some other change of design, then a fixed-sample analysis
will not be valid. The lack of validity is a matter of degree: if early cessation
or a change of design is an extremely remote possibility, then fixed-sample
methods will be approximately valid (Whitehead, 1992, 1997).

For example, in a randomized clinical trial for investigation of the effect
of a selenium nutritional supplement on the prevention of skin cancer, it is
determined that plasma selenium levels are not rising as expected in some
patients in the supplemented group, indicating a possible noncompliance
problem. In this case, the failure of some subjects to receive the prescribed
amount of selenium supplement would have led to a loss of power to detect
a significant benefit, if one was present. One could then initiate a prestudy

proportion is 0.95 is approximately 1 in 10,000. Similarly, the cumulative probability
of one or fewer cures is less than 15 percent. As such, after only three patients are
tested, considerable information regarding whether the true cure rate is 95 percent or
more is already available. Following this simple sequential strategy, one would test
each dose (beginning with the lowest dose) with a small number of patients (e.g., three
patients) and increase to the next dose level if the results of the screening trial indicate
that the probability of cure for the targeted proportion (e.g., 0.95 percent) is small. In
the current example, one would clearly increase the dose if zero of three patients was
cured and would most likely increase the dose to the next level even if one or two
patients were cured. If, in this example, all three patients engrafted, one would then test
either 19 or 73 patients (depending on the desired width of the confidence interval)
and determine a confidence interval for the true engraftment rate with the desired level
of precision. If the upper confidence limit is less than the targeted engraftment rate, then
one would proceed to the next highest TBI dose level and repeat the test.
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FIGURE 3-1  Parameters for a clinical trial with a sequential design for prevention of loss
of bone mineral density in astronauts. A. Group sample sizes available for clinical study.
B. Establishment of repeated confidence intervals for a clinical intervention for preven-
tion of loss of bone mineral density for determination of the success (S) or failure (F) of
the intervention.

SOURCE: Feiveson (2000).
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BOX 3-3
Sequential Testing with Limited Resources

As an illustration of sequential testing in small clinical studies, consider the innova-
tive approach to forensic drug testing proposed by Hedayat, Izenman, and Zhang
(1996). Suppose that N units such as pills or tablets or squares of lysergic acid dieth-
ylamide (LSD) are obtained during an arrest and one would like to determine the
minimal number that would have to be screened to state with 95 percent confidence
that at least N1 of the total N samples will be positive. To solve the problem, define m
as the expected number of negative units in the initial random sample of n units and X
as the observed number of negative units in a sample of size n. Typically, the forensic
scientist assumes that m is equal to 0, n samples are collected, and the actual number
of negative samples (X) is determined. Next, define k as the minimum number of pos-
itive drug samples that are needed to achieve a conviction in the case. One wishes to
test with a confidence of 100(1 – α, where α is the probability of committing a type 1
error) percent that N1 ≥ k. The question is: what is the smallest sample size n needed?

Hedayat and co-workers showed that the problem can be described in terms of the
inequality

maxN1<kProb[X ≤ m | N1] ≤ α,
which is equivalent to
maxN1≤k–1Prob[X ≤ m | N1] ≤ α,
and is satisfied by
Prob[X ≤ m | N1 = k – 1] ≤ α.

This is a cumulative probability of the hypergeometric distribution, that can be
expressed as
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treatment period in which potential noncompliers could be identified and
eliminated from the study before randomization (Jennison and Turnbull,
1983).

Another reason for early examination of study results is to check the
assumptions made when designing the trial. For example, in an experiment
where the primary response variable is quantitative, the sample size is often
set assuming this variable to be normally distributed with a certain variance.
For binary response data, sample size calculations rely on an assumed value
for the background incidence rate; for time-to-event data when individuals
enter the trial at staggered intervals, an estimate of the subject accrual rate is
important in determining the appropriate accrual period. An early interim
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For example, assume that the total number of units under investigation is 150 and
suppose that one wants to claim with 95 percent confidence that the number of positive
units, N1, is at least 135. If one assumes that there will be no negative units in the initial
sample (i.e., m = 0) then one can begin with an initial sample of 25, using the inequal-
ity given above. The investigators draw a random sample of 25, and if no negative
units are found, the investigators can conclude with 95 percent confidence that the total
number of positive units (N1) is greater than 135. Note that if one actually observes X
to be equal to 1 negative unit, one then can determine what value of N1 is feasible or
recompute n. For example, say that one observes X is equal to 2 negative units among
25 initial samples. With 95 percent confidence one can claim that k equal to 118
positive units will be found. Alternatively, if one requires N1 to be ≥ 135 positive units,
one can increase n to 61 samples by drawing an additional 61 - 25 = 36 random
samples.

A useful example in clinical trials is the comparison of a new drug with a standard
drug for the treatment of a rare disease. For example, it may be known that the rate of
response to an existing drug is 80 percent; however, the drug has serious side effects.
A new drug without the side effect profile of the old drug has been developed, but it is
not known whether it is equally efficacious. Power computations revealed that 150
subjects are required to document that the response rate is at least 90 percent with 95
percent confidence (i.e., at least 135 of 150 patients respond). Unfortunately, 150
subjects are not available. Using the strategy developed by Hedayat and colleagues
(1996), one can examine 25 patients, and if they all respond, then one can conclude
with 95 percent confidence that the total number of responders is at least 135 among
the 150 patients that the investigators would have liked to test. There are numerous
applications of this type of sequential testing strategy in small clinical trials.

analysis can reveal inaccurate assumptions in time for adjustments to be
made to the design (Jennison and Turnbull, 1983).

Sequential methods typically lead to savings in sample size, time, and
cost compared with those for standard fixed-sample procedures (Box 3-3).
However, continuous monitoring is not always practical.

HIERARCHICAL MODELS

Hierarchical models can be quite useful in the context of small clinical
trials in two regards. First, hierarchical models provide a natural framework
for combining information from a series of small clinical trials conducted
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within ecological units (e.g., space missions or clinics). In the case where the
data are complete, in which the same response measure is available for each
individual, hierarchical models provide a more rigorous solution than meta-
analysis, in that there is no reason to use effect magnitudes as the unit of
observation. Note, however, that a price must be paid (i.e., the total sample
size must be increased) to reconstruct a larger trial out of a series of smaller
trials. Second, hierarchical models also provide a foundation for analysis of
longitudinal studies, which are necessary for increasing the power of re-
search involving small clinical trials. By repeatedly obtaining data for the
same subject over time as part of a study of a single treatment or a crossover
study, the total number of subjects required in the trial is reduced. The re-
duction in the sample size number is proportional to the degree of indepen-
dence of the repeated measurements.

A common theme in medical research is two-stage sampling, that is,
sampling of responses within experimental units (e.g., patients) and sam-
pling of experimental units within populations. For example, in prospective
longitudinal studies patients are repeatedly sampled and assessed in terms of
a variety of endpoints such as mental and physical levels of functioning or in
terms of the response of one or more biological systems to one or more
forms of treatment. These patients are in turn sampled from a population,
often stratified on the basis of treatment delivery, for example, in a clinic, in
a hospital, or during space missions. Like all biological and behavioral char-
acteristics, the outcome measures exhibit individual differences. Investiga-
tors should be interested in not only the mean response pattern but also the
distribution of these response patterns (e.g., time trends) in the population
of patients. One can then address the number or proportion of patients who
are functioning more or less positively at a specific rate. One can then de-
scribe the treatment-outcome relationship not as a fixed law but as a family
of laws, the parameters of which describe the individual biobehavioral ten-
dencies of the subjects in the population (Bock, 1983). This view of biologi-
cal and behavioral research may lead to Bayesian methods of data analysis.
The relevant distributions exist objectively and can be investigated empiri-
cally.

In medical research, a typical example of two-stage sampling is the longi-
tudinal clinical trial, in which patients are randomly assigned to different
treatments and are repeatedly evaluated over the course of the study. De-
spite recent advances in statistical methods for longitudinal research, the
cost of medical research is not always commensurate with the quality of the
analyses. Reports of such studies often consist of little more than an end-
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point analysis in which measurements only for those participants who have
completed the study are considered in the analysis or the last available mea-
surement for each participant is carried forward as if all participants had, in
fact, completed the study. In the first example of a “completer- only” analy-
sis, the available sample at the end of the study may have little similarity to
the sample initially randomized. There is some improvement in the case of
carrying the last observation forward. However, participants treated in the
analysis as if they have had identical exposures to the drug may have quite
different exposures in reality or their experiences while receiving the drug
may be complicated by other factors that led to their withdrawal from the
study but that are ignored in the analysis. Both cases lead to dramatic losses
of statistical power since the measurements made on the intermediate occa-
sions are simply discarded. In these studies a review of the typical level of
intraindividual variability of responses should raise serious questions regard-
ing reliance on any single measurement.

To illustrate the problem, consider the following example. Suppose a
longitudinal randomized clinical trial is conducted to study the effects of a
particular therapeutic intervention (countermeasure) on bone mineral den-
sity measurements taken at multiple points in time during the course of a
space mission. At the end of the study, the data comprise a file of bone
mineral density measurements for each patient (astronaut) in each treatment
group. In addition to the usual completer or end-point analysis, a data ana-
lyst might compute means for each week and might fit separately for each
group a linear or curvilinear trend line that shows average bone mineral
density loss per week. A more sophisticated analyst might fit the line using
some variant of the Potthoff-Roy procedure, although this would require
complete and similarly time-structured data for all subjects (Bock, 1979).

Despite the question of whether bone mineral density measurements
are related to the ability of an astronaut to function in space, most objection-
able is the representation of the mean trend in the population as a biological
relationship acting within individual subjects. The analysis might purport
that as any astronaut uses a countermeasure he or she will decrease the effect
of life in a weightless environment on bone mineral density loss at some
fixed rate (e.g., 0.1 percent per week). This is a gross oversimplification. The
account is somewhat improved by reporting of mean trends for important
subgroups: astronauts of various ages, males and females, and so on. Even
then, within such groups some patients will respond more to a given coun-
termeasure, some will respond less, and the responses of others will not
change at all. Like all biological characteristics, there are individual differ-



70 SMALL CLINICAL TRIALS: ISSUES AND CHALLENGES

ences in response trends. Therefore, both the mean trend and the distribu-
tion of trends in the population of patients are of interest. One can then
speak of the number or proportion of patients who respond to a clinically
acceptable degree and the rates at which their biological status changes over
time.

In a longitudinal study, repeated observations are nested within indi-
viduals and the hierarchical model is used to incorporate the effects of
intrasubject correlation on estimates of uncertainty (i.e., standard errors and
confidence intervals) and tests of hypotheses for the fixed effects or struc-
tural parameters (e.g., differential treatment efficacy) in the model. Note
that hierarchical models are equally useful in the context of clustered data,
in which participants are nested within groups (e.g., different studies or
space missions), and the sharing of this similar environment induces a corre-
lation among the responses of participants within strata.

Analysis of this type of data (under the assumptions that a subset of the
regression parameters has a distribution in the population of participants
and that the model residuals have a distribution in the population of re-
sponses within participants and also in the population of participants) be-
longs to the class of statistical analytical models called:

• mixed model (Elston and Grizzle, 1962; Longford, 1987);
• regression with randomly dispersed parameters (Rosenberg, 1973);
• exchangeability between multiple regressions (Lindley and Smith,

1972);
• two-stage stochastic regression, (Fearn, 1975);
• James-Stein estimation (James and Stein, 1961);
• variance component models (Dempster, Rubin, and Tsutakawa, 1981;

Harville, 1977);
• random coefficient models (DeLeeuw and Kreft, 1986);
• hierarchical linear models (Bryk and Raudenbush, 1987);
• multilevel models (Goldstein, 1986); and
• random-effect regression models (Laird and Ware, 1982).

Along with the seminal articles that have described these statistical mod-
els, several book-length texts that further describe these methods have been
published (Bock, 1989; Bryk and Raudenbush, 1992; Diggle, Liang, and
Zeger, 1994; Goldstein, 1995; Jones, 1993; Lindsey, 1993; Longford, 1993).
For the most part, these treatments are based on the assumptions that the
residual effects are normally distributed with zero means and a covariance
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matrix in all participants, and that the random effects are normally distrib-
uted with zero means and covariance matrix. Recent review articles summa-
rize the use of hierarchical models in biostatistics and health services re-
search (Gibbons, 2000; Gibbons and Hedeker, 2000). Some statistical details
of the general linear hierarchical regression model are provided in Appen-
dix A. The case study presented in Box 3-4 provides an example of how
hierarchical models can be used to aid in the design and analysis of small
clinical trials.

BAYESIAN ANALYSIS

The majority of statistical techniques that clinical investigators encoun-
ter are of the frequentist school and are characterized by significance levels,
confidence intervals, and concern over the bias of estimates (Jennison and
Turnbull, 1983).  The Bayesian philosophy of statistical inference however is
fundamentally different from that underlying the frequentist approach
(Malakoff, 1999; Thall, 2000). In certain types of investigations Bayesian

BOX 3-4
Power Consideration for Space Mission Clinical Trials

A natural application for hierarchical regression models is the problem in which
astronauts are nested within space missions and the intervention (e.g., the presence or
the absence of a particular countermeasure) is randomly assigned at the level of the
space mission. To illustrate the problem, assume that one is interested in detecting a
difference of a 0.5 standard deviation unit between control and experimental condi-
tions by a one-tailed test. In addition, assume that five astronauts are available per
space mission and that the intraspace mission correlation is 0.2.

Assuming a Type I error rate of 5 percent (i.e., 95 percent confidence), how many
space missions are required to have 80 percent statistical power of detection of a
difference? Using statistical power computations for the clustered t distribution (Hsieh,
1988) one finds that detection of a difference of 0.5 standard deviation unit with 80
percent power would require for each condition (i.e., the control versus the experimen-
tal condition) 18 space missions, each with 5 subjects, or a total of 180 astronauts.Note
that if the effect size is increased to a difference of 1 standard deviation unit, which
may be acceptable for bone mineral density measurement data, the number of space
missions is reduced to 5 per condition, for a total of 50 astronauts. In a longitudinal
study (i.e., repeated evaluation of astronauts during their tour of duty), statistical power
computations become more complex because they can involve both random effects and
residual autocorrelations. (The interested reader is referred to the paper by Hedeker,
Gibbons, and Waternaux [1999]).
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analysis can lead to practical methods that are similar to those used by statis-
ticians who use the frequentist approach.

The Bayesian approach has a subjective element. It focuses on an un-
known parameter value q, which measures the effect of the experimental
treatment. Before designing a study or collecting any data, the investigator
acquires all available information about the activities of both the experimen-
tal and the control treatments. This provides some information about the
possible value of θ.

The Bayesian approach is based on the supposition that the investigator’s opin-
ion can be expressed in the form of a value for P(θ ≤ x) for every x between – ∞
and ∞. Here P(θ ≤ x) represents the probability that θ is less than or equal to x.
The probability is not frequentist: it does not represent the proportion of times
that θ is less than or equal to x. Instead, P(θ ≤ x) represents how likely the
investigator thinks it to be that θ is less than or equal to x. The investigator is
allowed to think only in terms of functions P(θ ≤ x) which rise from 0 at x = – ∞
to 1 at x = ∞. Thus P(θ ≤ x) defines a probability distribution for θ1, which will
be called the subjective distribution of θ. Notice how deep the division between
the frequentist and the Bayesian goes: even the notion of probability receives a
different interpretation (Jennison and Turnbull, 1983, p. 203).

Thus, before the investigator has observed any data, a subjective distri-
bution of θ can be formulated from the experiences and knowledge gained
by others. At this stage, the subjective distribution can be called the prior
distribution of θ. After data are collected, these will influence and change
opinions about θ. The assessment of where q lies may change (reflected by a
change in the location of the subjective distribution), and uncertainty about
its value should decrease (reflected by a decrease in the spread of this sub-
jective distribution). The combination of observed data and prior opinion is
governed by Bayes’s theorem, which provides an automatic update of the
investigator’s subjective opinion. The theorem then specifies a new subjec-
tive distribution for θ, called a posterior distribution (Jennison and Turnbull,
1983).

The attraction of the Bayesian approach lies in its simplicity of concept
and the directness of its conclusions. Its flexibility and lack of concern for
interim inspections are especially valuable in sequential clinical trials. The
main problem with the Bayesian approach, however, lies in the idea of a
subjective distribution.

Subjective opinions are a legitimate part of personal inferences. A small investi-
gating team might be in sufficient agreement to share the same prior distribu-
tion but it is less likely that all members of the team will hold the same prior
opinions and some members will be reluctant to accept an analysis based in
part on opinions that they do not share. An alternative possibility is for investi-
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gators to adopt a prior distribution representing only vague subjective opinion,
which is quickly overwhelmed by information from the data. The latter sugges-
tion leads to analyses which are similar to frequentist inferences, but it would
appear to lose the spirit of the Bayesian approach. If the prior distribution is
not a true representation of subjective opinion then neither is the posterior
(Jennison and Turnbull, 1983, p. 204).

More generally, the Bayesian approach has the following advantages:

• Problem formulation. Many problems, such as inferences or deci-
sion making based on small amounts of data, are easy to formulate and solve
by Bayesian methods.

• Sequential analysis. Because the posterior distribution can be up-
dated repeatedly, using each successive posterior distribution as the prior
distribution for the next update, it is the natural paradigm for sequential
decision making.

• Meta-analysis. Bayesian hierarchical models provide a natural frame-
work for combining information from different sources. This is often re-
ferred to as “meta-analysis” in the context of clinical trials, but the methods
are quite broadly applicable.

• Prediction. An especially useful tool is the predictive probability of a
future event. This allows one to make statements such as “Given that an
astronaut has not suffered bone mineral density loss during the first year of a
2-year space mission, the probability that he or she will suffer bone mineral
density loss during the second year is 25 percent.”

• Communication. Bayesian models, methods, and inferences are often
easier to communicate to nonstatisticians. This is because most people think
and behave like Bayesians, whether or not they understand or are even aware
of the formal paradigm. The posterior distribution provides a framework
for describing and communicating one’s conclusions in a variety of ways that
make sense to nonstatisticians. Although the details are not presented here,
Bayesian methods (Thall, 2000; Thall and Sung, 1998; Thall and Russell,
1998; Thall, Simon, and Estey, 1995; Thall, Simon, and Shen, 2000; White-
head and Brunier, 1995) can be applied in most of the design and analysis
situations described in this report and in many cases will be extremely useful
for the analysis of results of small clinical trials.

DECISION ANALYSIS

Decision analysis is a modeling technique that systematically considers
all possible management options for a problem (Hillner and Centor, 1987).
It uses probabilities and utilities to explicitly define decisions. The computa-
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tional methods allow one to evaluate the importance of any variable in the
decision-masking process. Sensitivity analysis describes the process of recal-
culating the analysis as one changes a variable through a series of plausible
values. The steps to be taken in decision analysis are outlined in Table 3-1.

As mentioned in Chapter 2, one can use decision analysis as an aid in the
experimental design process. If one models a clinical situation a priori, one
can test the importance of a single value in making the decision in question.
Performance of a sensitivity analysis before a study is designed to provide an
understanding of the influence of a given value on the decision. Such analy-
ses can determine the best use of a small clinical trial. This pre-analysis al-
lows one to focus data collection on important variables (see Box 3-5).

The other major advantage of decision analysis occurs after data collec-
tion. If one assumes that the sample size is inadequate and therefore that the
confidence intervals on the effect in question are wide, one may still have a
clinical situation for which a decision is required. One might have to make
decisions under conditions of uncertainty, despite a desire to increase the
certainty. The use of decision analysis can make explicit the uncertain deci-
sion, even informing the level of confidence in the decision. A 1990 Institute
of Medicine report states: it is this flexibility of decision analysis that gives it
the potential to help set priorities for clinical investigation and effective trans-
fer of research findings to clinical practice (Institute of Medicine, 1990).
The formulation of a decision analytical model helps investigators consider
which health outcomes are important and how important they are to one
another. Decision analysis also facilitates consideration of the potential mar-
ginal benefit of a new intervention by forcing comparisons with other alter-
natives or “fallback positions.” Combining several methodologies, such as

TABLE 3-1  Steps in a Decision Analysis

• Frame the question
• Establish a time horizon
• Structure the decision tree (choices, chances, outcomes)
• Assess the probabilities
• Assess the utilities
• Evaluate the decision tree (expected value)
• Perform sensitivity analysis
• Interpret the results
• Iterate

SOURCE: Pauker (2000).
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BOX 3-5
Using Decision Analysis to Prevent

Osteoporosis in Space

Consider a decision analysis that takes the following into consideration:

• a long space mission accelerates bone mineral density loss,
• bone mineral density loss can produce fractures now or in the future,
• fractures produce disabilities now and disabilities in the future, and
• a proposed special program may have efficacy in ameliorating bone mineral

density loss, but may have side effects.

Determine the expectation by evaluating a decision tree (Figure 3.2). A decision
tree can be set up for either a surrogate measure of bone loss (e.g., bone mineral
density loss) or for an actual disabling outcome (e.g., bone fracture, as illustrated in
Figure 3.3).

Then by making a number of assumptions, such as

• probability of fracture (p) = 0.2,
• efficacy of special program (e) = 0.3,
• probability of side effects (s) = 0.05,
• quality of life (LT) after fracture (qFx) = 0.85,
• quality of life (LT) after side effects (qSE) = 0.999,
• life expectancy of astronaut (LE) = 35 y, where y is years,
• short-term morbidity fracture (stmFx) = 0.3 y,
• short-term morbidity side effects (stmSE) = 0.1 y, and
• short-term morbidity special program (stmSP) = 0.04 y

one can assign values at the chance nodes to pick the best option (see Figure 3.4).

Evaluating a decision tree: two rules
– At a decision node, pick the best option

– At a chance node, the expected value equals the
weighted average of the branches,

with the probabilities being weights

5

15

=  15

5

15

0.2

0.8

=  (0.2)(5) + (0.8)(15) = 13

FIGURE 3-2  Decision analysis expectation.  SOURCE: Pauker (2000).
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FIGURE 3-3  Decision tree for preventing osteoporotic fractures in space.  SOURCE:
Pauker (2000).

FIGURE 3-4  Assigning values at chance nodes to pick the best option (clinical interven-
tion) for preventing osteoporotic fractures in space.  SOURCE: Pauker (2000).
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decision analysis, with a sequential clinical trials approach potentially offers
additional improvements in the means of determining the efficacy of a thera-
peutic intervention in small trial populations.

Although decision analysis does not address the questions raised by
small clinical trials, it can allow a better trial design to be used and interpre-
tation of the results of such trials.

• Decision analytical models can combine data from diverse sources
and examine interactions.

• Decision analytical models are most powerfully used to answer the
question “What if?” by sensitivity analyses.

• Decision analytical models can examine the impact of morbidity and
effects on quality of life because they can integrate many attributes in a util-
ity structure.

• Decision analyses might be used sequentially in small ongoing trials,
in which the results for every additional patient might guide the use of the
model for subsequent patients.

• Probability functions such a beta functions can provide such auto-
matic updating of distributions in a model as more patients’ experiences are
revealed (Pauker, 2000).

STATISTICAL PREDICTION

When the number of control samples is potentially large and the num-
ber of experimental samples is small and is obtained sequentially from a
series of clusters with small sample sizes (e.g., space missions), traditional
comparisons of the aggregate means or medians may be of limited value. In
those cases, one can view the problem not as a classical hypothesis testing
problem but as a problem of statistical prediction. Conceptualized in that
way, the problem is one of deriving a limit or interval on the basis of the
control distribution that will include the mean or median for all or a subset
of the experimental cluster samples. For example, one may wish to compare
the median bone mineral density loss in 5 astronauts in each of five future
space missions (i.e., a total of 25 astronauts clustered in groups of 5 each)
with the distribution of bone mineral density loss in controls over a similar
period of time on Earth or alternatively with that for a control group of
astronauts who are in a weightless environment (e.g., the International Space
Station) but who are not taking part in a particular countermeasure pro-
gram. As the number of cluster samples increases, confidence in the deci-
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sion rule also increases. In the following, a general nonparametric approach
to this problem is developed, and its use is illustrated with the problem of
testing for bone mineral density loss during space missions. Although more
general than parametric alternatives, a loss of statistical power is associated
with the nonparametric approach. Parametric alternatives (normal, lognor-
mal, and Poisson distributions) are presented in Appendix A and can be
used when the observed data are consistent with one of these distributions.

The prediction problem involves construction of a limit or interval that
will contain one or more new measurements drawn from that same distribu-
tion with a given level of confidence. As an example, in environmental moni-
toring problems one may be interested in determining whether a single new
measurement (or the mean of n new measurements) obtained from an on-
site monitoring location is consistent with background levels as character-
ized by a series of n measurements obtained from off-site (i.e., background)
monitoring locations.

If the new measurement(s) lies within the interval (or below [above] the
upper [lower] limit), then one can conclude that the measurement from the
on-site monitoring location is consistent with the background measurement
and is therefore not affected by activities at the site from which the measure-
ment was obtained. By contrast, if the new measurement(s) lies outside of
the interval, one can conclude that it is inconsistent with the background
measurement and may potentially have been affected by the activities at the
site (e.g., disposal of waste or some industrial process).

One can imagine that as the number of future measurements (i.e., new
monitoring locations and number of constituents to be examined) gets large,
the prediction interval must expand so that the joint probability of any one
of those comparisons by chance alone is small, say 5 percent. Of course, this
results in a loss of statistical power. To this end, Gibbons (1987b) and Davis
and McNichols (1987) (see Gibbons [1994] for a review) suggested that the
new measurements be tested sequentially so that a smaller and more envi-
ronmentally protective limit can be used. The basic idea is that in the pres-
ence of an initial value that exceeds the background level in an on-site moni-
toring location (initial exceedance), another sample for independent
verification of the level should be obtained. A true exceedance is indicated
only if both the initial level and the verification resample exceed the limit (or
are outside the interval). There are many variations of this sequential strat-
egy in which more than one additional sample (resample) may be obtained.
The net result is that a much smaller prediction limit can be used sequen-
tially compared with the limit that would be used if the statistical prediction
decision was based on the result of a single comparison, leading to a dra-
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matic increase in statistical power. In fact, this strategy is now used almost
exclusively in environmental monitoring programs in the United States
(Davis, 1993; Gibbons, 1994, 1996; Environmental Protection Agency,
1992).

This idea can be directly adapted to the problem of loss of bone mineral
density in astronauts, particularly with respect to the design and analysis of
data from a series of small clinical trials (e.g., space missions, each consisting
of a small number of astronauts) and in which a potentially large number of
outcomes are simultaneously assessed. To provide a foundation, consider
the case in which a study has n control subjects (e.g., astronauts on the
International Space Station or in a simulated environment, but without coun-
termeasures) and a series of p replicate experimental cohorts (e.g., space
missions), each of size ni (e.g., ni = 5 astronauts in each of p = 5 space mis-
sions). The objective is to use the n control measurements to derive an upper
(lower) bound for a subset (e.g., 50 percent) of the ni experimental subjects
in at least one of the p experimental subject cohorts (e.g., space missions).

Given the previous characterization of the problem and the question-
able distributional form of the outcomes of multiple countermeasures, a
natural approach to the solution of this problem is to proceed nonpara-
metrically. For a particular outcome (e.g., bone mineral density), define an
upper prediction limit as the uth largest control measurement among the n
control subjects. If u is equal to n, the prediction limit is the largest control
measurement for that particular outcome measure or endpoint. If u is equal
to n – 1 then the prediction limit is the second largest control measurement
for that outcome measure. A natural advantage of using u < n is that it
provides an automatic adjustment for outliers, in that the largest n – u values
are removed. Note, however, that the larger the difference between u and n
the lower the overall confidence, if everything else is kept equal.

Now consider the experimental subjects. Assume that ni experimental
subjects (e.g., astronauts who are subjected to experimental countermea-
sures) exist in each of p experimental subject cohorts (e.g., space missions).
Let si be the number of subjects required to be contained within the interval
for cohort i. For example, if ni is equal to 5 and one wishes to have the
median value for cohort i be below the upper prediction limit, then si is
equal to 3. An effect of the experimental intervention on a particular out-
come measure is declared only if the sith largest measurement (e.g., the me-
dian) lies outside of the prediction interval (or above [below] the prediction
limit in the one-sided case) in all p experimental subject cohorts.

The questions of interest are as follows:
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1. What is the probability of a chance exceedance in all p experimental
subject cohorts for different values of n, u, ni, si, and p?

2. How is this probability affected by various numbers of outcome mea-
sures (i.e., k)?

3. What is the power to detect a real difference between control and
experimental conditions for a given statistical strategy?

A drawback to this method is that the control group is typically not a
concurrent control group. Thus, if other conditions, in addition to the inter-
vention being evaluated, are changed, it will not be possible to determine if
the changes are in fact due to the experimental condition.

Specific details regarding implementation of the approach and a general
methodology for answering these questions is presented in Appendix A and
is illustrated in Box 3-6.

The use of statistical prediction limits described here represents a para-
digm shift in the way in which small clinical studies are designed and ana-
lyzed. The method involves characterization of the distribution of control
measurements and the use of parameters for the control distribution to draw
inferences from a series of more limited samples of experimental measure-
ments. This is a classical problem in statistical prediction and departs from
the more commonly used paradigm of hypothesis testing. The methodology
described here is applicable to virtually any problem in which the number of
potential endpoints is large and the number of available subjects is small. In
a recent work by Gibbons and colleagues (submitted for publication), a
similar approach was developed to compare relatively small numbers of ex-
perimental tissues to a larger number of control tissues in terms of poten-
tially thousands of gene expression levels obtained from nucleic acid
microarrays. To provide ease of application, they developed a “probability
calculator” that computes confidence levels and statistical power for any set
of values of n, ni, p, u, i, si, and k. (The probability calculator is freely avail-
able at www.uic.edu/labs/biostat/ and is useful for both design and analysis
of small clinical studies.)

META-ANALYSIS: SYNTHESIS OF RESULTS OF
INDEPENDENT STUDIES

Meta-analysis refers to a set of statistical procedures used to summarize
empirical research in the literature (Table 3-2). Although the concept of
combining the results of many studies has its origins in the early 1900s agri-
cultural experiments, Glass in 1976 coined the term to mean “the analysis of
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BOX 3-6
Case Study of Bone Mineral Density Loss

During Space Missions

Space travel in low Earth orbit or beyond Earth’s orbit exposes individuals (astro-
nauts or cosmonauts) to environmental stresses (e.g., microgravity and cosmic radia-
tion) that, if unabated, could result in radiation-induced physiological damage or
marked physiological adaptation (microgravity-induced shifts in calcium and bone
metabolism) that could be deleterious or even fatal during space travel, on landing on
another planet, or after the return to Earth. Based on the preceding discussion of statis-
tical prediction, one can consider the details of design and analysis of a potential study
of bone mineral density loss in astronauts.

Assume that there are n control astronauts in either a simulated environment or on
the International Space Station not taking part in a countermeasure program, or per-
haps serving as matched control astronauts on Earth and ni experimental subjects (e.g.,
astronauts subjected to experimental countermeasures) in each of p space missions. Let
si be the number of subjects required to be contained within the interval for space
mission i. For example, if ni is equal to 5 and one wishes to have the median value in
space mission i below the upper prediction limit, then si is equal to 3. An effect of the
experimental intervention on a particular outcome measure is declared only if the sith
largest measurement (e.g., the median) lies outside of the prediction interval (or above
[below] the prediction limit in the one-sided case) in all p space missions. Statistical
details for both parametric and nonparametric solutions to this problem are presented
in Appendix A.

Returning to the example, suppose that a series of 20 control astronauts on Earth
are monitored for the same period of time that 5 astronauts on a single space mission
are evaluated for the effects of a series of countermeasures on bone mineral density
loss. The question is whether the countermeasures are sufficient to eliminate the effect of
the space mission on bone mineral density loss, such that the bone mineral density
measurements for the experimental astronauts are consistent with the bone mineral
density measurements for the control astronauts. To this end, consider a comparison of
the maximum of 20 control measurements (n = u = 20) with the median for a single
space mission (p = 1) with ni equal to five experimental astronauts (i.e., si = 3) for a
single outcome measure (Case A). Using the previous equations, one obtains an overall
confidence level of 99.6 percent, indicating an extremely low probability that the ex-
perimental median will be above the largest control bone mineral density measurement
by chance alone. One can do better, however. Instead of selecting the most extreme
control measurement, take the 18th largest measurement (Case B). In this case, the
confidence is 96 percent and one has a more powerful decision rule. Now, consider
the effects of multiple endpoints (Case C). With k equal to 10 endpoints and the predic-
tion limit defined as the 18th largest control measurement, the overall confidence level
for the experiment is reduced to 68 percent. To counteract this effect (Case D), one can
add a second space mission (p = 2), each with ni equal to five astronauts, and the
overall confidence is increased back to 96 percent. If one had instead considered p
equal to four space missions (Case E), a confidence of 94 percent would be achieved
by setting the prediction limit to the 15th largest control measurement, again increasing
the statistical power of the decision rule.

How does one select from among the various strategies described in the simple
example described above? The answer is to select the strategy that has reasonable
confidence (i.e., a low rate of false-positive results, e.g., 5 percent) and that has the
maximum statistical power for a desired effect size. To this end, one can evaluate the
power of the test to detect a true difference between the control group and the exper-
imental group by simulation.
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analyses.” Meta-analysis is widely used in education (see Box 3-7), psychol-
ogy, and the medical sciences (e.g., in evidence-based medicine) and has
frequently been used to study the efficacies of different treatments (Hedges
and Olkin, 1985).

A meta-analysis can summarize an entire set of research in the literature,
a sample from a large population of studies, or some defined subset of stud-
ies (e.g., published studies or n-of-1 studies). The degree to which the re-
sults of a synthesis can be generalized depends in part on the nature of the
set of studies. In general, meta-analysis serves as a useful tool to answer
questions for which single trials were underpowered or not designed to
address. More specifically, the following are benefits of meta-analysis:

• It can provide a way to combine the results of studies with different
designs (within reason) when similar research questions are of interest.

• It uses a common outcome metric when studies vary in the ways in
which outcomes are measured.

• It accounts for differences in precision, typically by weighting in pro-
portion to sample size.

• Its indices are based on sufficient statistics.
• It can examine between-study differences in results (heterogeneity).

It can examine the relationship of study outcomes to study features
(Becker, 2000).

TABLE 3-2  Key Points in the Conduct of Meta-Analyses

• Systematic reviews of study findings often use complex statistical methods to
synthesize and interpret data from individual studies, and an understanding of their
basic principles is important in interpreting their results.

• Quantitative synthesis cannot replace sound clinical reasoning; combining poor-
quality or overly biased data that do not make sense is likely to produce unreliable
results.

• When appropriate, combining data from various studies to obtain a common estimate
can increase the statistical power for the discovery of treatment efficacy and can
increase the precision of the estimate.

• Sensitivity analyses should be performed to determine the robustness of conclusions.
• Patients, clinical settings, and treatment responses are expected to vary across trials

that have studied the same problem. Insight into reasons for the heterogeneity of trial
results may often be as important as or even more important than producing
aggregate results.

SOURCE: Lau, Ioannidis, and Schmid (1997).
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A relevant question is: when does a meta-analysis of small studies rule
out the need for a large trial? One investigation showed that the results of
smaller trials are usually compatible with the results of larger trials, although
large studies may produce a more precise answer to a particular question
when the treatment effect is not large but is clinically important (Cappelleri,
Ioannidis, Schmid, et al., 1996). When the small studies are replicates of
each other—as, for example, in collaborative laboratory or clinical studies

BOX 3-7
Combining n-of-1 Studies in Meta-Analysis: Results from

Research in Special Education

Researchers in special education are often concerned with individualized treat-
ments for behavior disorders or with low-incidence disabilities and disorders. Single-
case research designs are quite common. Study designs typically involve a baseline
period followed by a treatment period and possibly follow-up. Multiple measures are
usually obtained from each case during the baseline and treatment. Crossover treat-
ment designs are occasionally used and usually involve only two baseline-treatment
cycles. Meta-analysis has been applied since the 1980s to summarize these case-study
designs.

However, the methods proposed have been controversial and the statistical proper-
ties of the methods have not been rigorously studied. Three approaches have been
used to measure effects.

(1) Single-case effect size. Some researchers have used an index similar to the
effect size, computed for n > 1 studies as the standardized difference between group
means:

g
Y Y

S
treatment baseline

y pooled

= −

 

Ytreatment is the subject’s mean score during treatment, Ybaseline is the mean be-
fore treatment, and SY pooled is obtained by pooling intrasubject variation across the
two time periods.

(2) Percentage of nonoverlapping data index (PND) (Scruggs, Mas-
tropieri, and Castro, 1987). The percentage of nonoverlapping data index is also
based on the idea of examining the data from the baseline and treatment periods of the
case study. The index is the percentage of datum values observed during treatment that
exceed the highest baseline data value.

(3) Regression approaches (Center, Skiba, and Casey, 1986). The researcher
estimates the treatment effect and separate effects of time during baseline (t = 1 to na)
and treatment (t = na to n) phases via

Yi = b0 + b1 Xi + b2 t + b3 Xi (t –na) + eI

The effects of interest, say, b1 for X or b3 for X (t), are then evaluated via incremen-
tal F tests, which are transformed and summarized.
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or when there has been a concerted effort to corroborate a single small study
that has produced an unexpected result—a meta-analysis may be conclusive
if the combined statistical power is sufficient. Even when small studies are
replicates of one another, however, the population to which they refer may
be very narrow. In addition, when the small studies differ too much, the
populations may be too broad to be of much use (Flournoy and Olkin, 1995).
Some have suggested that the use of meta-analysis to predict the results of
future studies is important but would require a design format not currently
used (Flournoy and Olkin, 1995).

Meta-analysis involves the designation of an effect size and a method of
analysis. In the case of proportions, some of the effect sizes used are risk
differences, risk ratios, odds ratios, number needed to treat, variance-stabi-
lized risk differences, and differences between expected and observed out-
comes. For continuous outcomes, the standardized mean difference or cor-
relations are common measures. The technical aspects of these procedures
have been developed by Hedges and Olkin (1985).

Meta-analysis sometimes refers to the entire process of synthesizing the
results of independent studies, including the collection of studies, coding,
abstracting, and so on, as well as the statistical analysis. However, some re-
searchers use the term to refer to only the statistical portion, which includes
methods such as the analysis of variance, regression, Bayesian analysis and
multivariate analysis. The confidence profile method (CPM), another form
of meta-analysis (Eddy, Hasselblad, and Shacter, 1992) adopts the first defi-
nition of meta-analysis and attempts to deal with all the issues in the process,
such as alternative designs, outcomes, and biases, as well as the statistical
analysis, which is Bayesian. Methods of analysis used for CPM include analy-
sis of variance, regression, nonparametric analysis, and Bayesian analysis.
The CPM analysis approach differs from other meta-analysis techniques
based on classical statistics in that it provides marginal probability distribu-
tions for the parameters of interest and if an integrated approach is used, a
joint probability distribution for all the parameters. More common meta-
analysis procedures provide a point estimate for one or more effect sizes
together with confidence intervals for the estimates. Although exact confi-
dence intervals can be obtained using numerical integration, large sample
approximations often provide sufficiently accurate results even when the
sample sizes are small.

Some have suggested that those who use meta-analysis should go be-
yond the point estimates and confidence intervals that represent the aggre-
gate findings of a meta-analysis and look carefully at the studies that were
included to evaluate the consistency of their results. When the results are
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largely on the same side of the “no-difference” line, one may have more
confidence in the results of a meta-analysis (LeLorier, Gregoire, Benhaddad,
et al., 1997).

Sometimes small studies (including n-of-1 studies) are omitted from
meta-analyses (Sandborn, McLeod, and Jewell, 1999). Others, however, view
meta-analysis as a remedy or as a means to increase power relative to the
power of individual small studies in a research domain (Kleiber and Harper,
1999). Because those who perform meta-analyses typically weight the results
in proportion to sample size, small sample sizes have less of an effect on the
results than larger ones. A synthesis based mainly on small sample sizes will
produce summary results with more uncertainty (larger standard errors and
wider confidence intervals) than a synthesis based on studies with larger
sample sizes. Thus, a cumulative meta-analysis requires a stopping proce-
dure that allows one to say that a treatment is or is not effective (Olkin,
1996).

When the combined trials are a homogeneous set designed to answer
the same question for the same population, the use of a fixed-effects model,
in which the estimated treatment effects vary across studies only as a result
of random error, is appropriate (Lau, Ioannidis, and Schmid, 1998). To as-
sess homogeneity, heterogeneity is often tested on the basis of the chi-square
distribution, although this lacks power. If heterogeneity is detected, the tra-
ditional approach is to abort the meta-analysis or to use random-effects mod-
els. Random-effects models assume that no single treatment effect exists,
but each study has a different true effect, with all treatment effects derived
from a population of such truths assumed to follow a normal distribution
(Lau, Ioannidis, and Schmid, 1998) (see section on Hiearchical Models and
Appendix A). Neither fixed-effects nor random-effects models are entirely
satisfactory because they either oversimplify or fail to explain heterogeneity.
Meta-regressions of effect sizes affected by control rates have been used to
develop reasons for observed heterogeneity and to attempt to identify sig-
nificant relations between the treatment effect and the covariates of interest;
however, a significant association in regression analysis does not prove cau-
sality. Because heterogeneity can be a problem in the interpretation of a
meta-analysis, an empirical study (Engels, Terrin, Barza, et al., 2000) showed
that, in general, random-effects models for odds ratios and risk differences
yielded similar results. The same was true for fixed-effects models. Random-
effects models were more conservative both for risk differences and for odds
ratios. When studies are homogeneous it appears that there is consistency of
results when risk differences or odds ratios are used and consistency of re-
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sults when random-effects or fixed-effects models are used. Differences ap-
pear when heterogeneity is present (Engels, Terrin, Barza, et al., 2000).

The use of an individual subject’s data rather than summary data from
each study can circumvent ecological fallacies. Such analyses can provide
maximum information about covariates to which heterogeneity can be as-
cribed and allow for a time-to-event analysis (Lau, Ioannidis, and Schmid,
1998). Like large-scale clinical trials, meta-analyses cannot always show how
individuals should be treated, even if they are useful for estimation of a
population effect. Patients may respond differently to a treatment. To ad-
dress this diversity, meta-analysis can rely on response-surface models to
summarize evidence along multiple covariates of interest. A reliable meta-
analysis requires consistent, high-quality reporting of the primary data from
individual studies.

Meta-analysis is a retrospective analytical method, the results of which
will be based primarily on the rigor of the technique (the trial designs) and
the quality of the trials being pooled. Cumulative meta-analysis can help
determine when additional studies are needed and can improve the predict-
ability of previous small trials (Villar, Carroli, and Belizan, 1995). Several
workshops have produced a set of guidelines for the reporting of meta-analy-
sis of randomized clinical trials (the Quality of Reporting of Meta-Analysis
group statement [Moher, Cook, Eastwood, et al., 1999], the Consolidated
Standard of Reporting Trials conference statement [Begg, Cho, Eastwood,
et al., 1996], and the Meta-Analysis of Observational Studies in Epidemiol-
ogy group statement on meta-analysis of observational studies [Stroup, Ber-
lin, Morton, et al., 2000]).

RISK-BASED ALLOCATION

Empirical Bayes methods are needed for analysis of experiments with
risk-based allocation for two reasons. First, the natural heterogeneity from
subject to subject requires some accounting for random effects; and second,
the differential selection of groups due to the risk-based allocation is handled
perfectly by the “u-v” method introduced by Herbert E. Robbins. The u-v
method of estimation capitalizes on certain general properties of distribu-
tions such as the Poisson or normal distribution that hold under arbitrary
and unknown mixtures of parameters, thus allowing for the existence of
random effects. At the same time, the u-v method allows estimation of aver-
ages under a wide family of restrictions on the sample space, such as restric-
tion to high-risk or low-risk subjects, thus addressing the risk-based alloca-
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tion design feature. These ideas and approaches are considered in greater
detail in Appendix A.

Another example from Finkelstein, Levin, and Robbins (1996b) given
in Box 3-8 illustrates the application of risk-based allocation to a trial study-
ing the occurrence of opportunistic infections in very sick AIDS patients.
This example was taken from an actual randomized trial, ACTG Protocol
002, which tested the efficacy of low-dose versus high-dose zidovudine
(AZT). Survival time was the primary endpoint of the clinical trial, but for
the purpose of illustrating risk-based allocation, Finkelstein and colleagues
focused on the secondary endpoint of opportunistic infections. They stud-
ied the rate of such infections per year of follow-up time with an experimen-
tal low dose of AZT that they hoped was better tolerated by patients and
which would thereby improve the therapeutic efficacy of the treatment.

SUMMARY

Because the choice of a study design for a small clinical trial is con-
strained by size, the power and effectiveness of such studies may be dimin-
ished, but these need not be completely lost. Small clinical trials frequently
need to be viewed as part of a process of continuing data collection; thus,
the objectives of a small clinical trial should be understood in that context.
For example, a small clinical trial often guides the design of a subsequent
trial. Therefore, a key question will be what information from the current
trial will be of greatest value in designing the next one? In small clinical trials
of drugs, for example, the most important result might be to provide infor-
mation on the type of postmarketing surveillance that should follow.

A major fundamental question is the qualitatively different goals that
one might have when studying very few people. The main example here is
determination of the best treatment that allows astronauts to avoid bone
mineral density loss. Such research could have many goals. One goal would
be to provide information on this phenomenon that is most likely to be
correct in some universal sense; that is, the knowledge and estimates are as
unbiased and as precise as possible. A second goal might be to treat the most
astronauts in the manner that was most likely to be optimal for each indi-
vidual. These are profoundly different goals that would have to be both
articulated and discussed before any trial designs could be considered. One
can find the components of a goal discussion in some of the descriptions of
individual designs, but the discussion of goals is not identified as part of a
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BOX 3-8
Illustration of a Clinical Trial on Opportunistic Infections

Using Risk-Based Allocation Analysis

A total of 512 subjects were randomly assigned in ACTG Protocol 002 to evaluate
the therapeutic efficacy of an experimental low dose of AZT (500 mg/day) versus the
high dose of AZT (1,500 mg/day) that was the standard dose at the time of the trial.
A total of 254 patients were randomized to the low-dose experimental group and 258
were randomized to the high-dose standard treatment group. Although all patients in
the original trial were seriously immunodeficient, the focus here is on the treatment
effect among the subgroup of 253 patients at highest risk, defined as those with initial
CD4-cell counts less than or equal to 60 per microliter of blood. In this subgroup, the
number of opportunistic infections among the 125 patients in the high-dose (standard)
treatment group was observed to be 296 with 66,186 days of follow-up, for an oppor-
tunistic infection rate of 1.632 per year. Among the 128 high-risk patients randomized
to the low-dose (experimental) treatment group, the number of opportunistic infections
was 262 with 75,591 days of follow-up, for an opportunistic infection rate of 1.265
per year. The ratio of the rate for the control group to the treatment group is 1.632/
1.265 = 1.290, with a standard error of ±0.109. Thus, the “gold standard” (random-
ized) estimate of the low-dose effect on the high-risk patients is that it reduces their rate
of opportunistic infections by about 22.5 percent (1–1/1.290 = 0.225) relative to that
for the higher-dose group.

If the trial had used risk-based allocation with all of the high-risk patients receiving
the experimental low dose and all of the lower-risk patients (with CD4-cell counts >60
per microliter) receiving the standard high dose, the effect of the standard dose on the
high-risk patients would have been estimated instead of being directly observed. This is
done by first fitting a model for the rate of opportunistic infections under standard
treatment with the data for the lower-risk patients. Previous data suggest that the annu-
al rate of opportunistic infection under the standard dose can be modeled by the
exponential function R(X) = A exp (BX), where X is the CD4-cell count per microliter at
the start of the trial, and A and B are constants to be estimated from the trial data for
the lower-risk patients. The rate R(X) is the expected number of opportunistic infections
per year of survival per patient for those with initial CD4-cell count X. A Poisson regres-
sion model was used, which assumes that the number of opportunistic infections occur-
ring in a given time period t under standard treatment has a Poisson distribution with
mean tR(X). By using the data for the 133 lower-risk patients who received the standard
dose, the maximum-likelihood estimates of the model parameters are A = 0.541 and B
= –0.00155. The model estimates that with a CD4-cell count of, for example, 60 per
microliter, the opportunistic infection rate would be 1.452 per year, whereas with a
CD4-cell count of 10 per microliter it would be 1.526 per year. The total expected
number of opportunistic infections for the high-risk patients under standard treatment is
the sum of the model expectations over all 128 high-risk patients (who in fact received
the low dose). That sum is 340.46, whereas the actual number is 262. The estimated
rate ratio among the high-risk patients is thus 340.46/262 = 1.2995 (with a standard
error of approximately ±0.147 after adjusting for overdispersion). Under risk-based
allocation, then, the estimated low-dose effect on the high-risk patients is a reduction in
the rate of opportunistic infection of 23.0 percent (1 – 1/1.2995 = 0.230), close to the
randomized estimate of 22.5 percent. In the estimation of the rate ratio, the use of risk-
based allocation and an appropriate model generated results that are virtually indistin-
guishable from those generated by the randomized clinical trial.

SOURCE: Finkelstein, Levin, and Robbins (1996b).
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conceptual framework that would go into choosing which class of trials to
be used.

It is quite likely that there could be very substantial disagreement about
those goals. The first might lead one to include every subject in a defined
time period (e.g., 10 missions) in one grand experimental protocol. The sec-
ond might lead one to identify a subgroup of individuals who would be the
initial experimental subjects and whose results would be applied to the re-
mainder of the subjects. On the other hand, it might lead to a series of
intensive metabolic studies for each individual, including, perhaps, n-of-1
type trials, which might be best for the individualization of therapy but not
for the production of generalizable knowledge.

Situations may arise in which it is impossible to answer a question with
any confidence. In those cases, the best that one can do is use the informa-
tion to develop new research questions. In other cases, it may be necessary
to answer the question as best as possible because a major, possibly irrevers-
ible decision must be made. In those cases, multiple, corroborative analyses
might boost confidence in the findings.

RECOMMENDATIONS

Early consideration of possible statistical analyses should be an integral
part of the study design. Once the data are collected, alternative statistical
analyses should be used to bolster confidence in the interpretation of re-
sults. For example, if one is performing a Bayesian analysis, a non-Bayesian
analysis should also be performed, and vice versa; similar cross-validation of
other techniques should also be considered.

RECOMMENDATION: Perform corroborative statistical analyses.
Given the greater uncertainties inherent in small clinical trials, sev-
eral alternative statistical analyses should be performed to evaluate
the consistency and robustness of the results of a small clinical trial.

The use of alternative statistical analyses might help identify the more
sensitive variables and the key interactions in applying heterogeneous re-
sults across trials or in trying to make generalizations across trials. In small
clinical trials, more so than in large clinical trials, one must be particularly
cautious about recognizing individual variability among subjects in terms of
their biology and health care preferences, and administrative variability in
terms of what can be done from one setting to another. The diminished
power of studies with small sample sizes might mean that the generalizability
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of the findings might not be a possibility in the short-term, if at all. Thus,
caution should be exercised in the interpretation of the results from small
clinical trials.

RECOMMENDATION: Exercise caution in interpretation. One
should exercise caution in the interpretation of the results of small
clinical trials before attempting to extrapolate or generalize those
results.
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4
General Guidelines

This report has surveyed a large number of experimental design and
analysis strategies that are useful, at least to some degree, in studies
with small numbers of participants. Throughout the report the com-

mittee has pointed out that, whenever possible, large and adequately pow-
ered randomized clinical trials are the method of choice. The committee has
also noted that in some cases such studies are impractical or impossible to
conduct and that one must derive inferences from less rigorously controlled
studies with less statistical power. To this end, the committee has presented
several different designs that can be used in a variety of different circum-
stances in which full randomized clinical trials are not possible. In addition,
the committee has presented several different analytical strategies, some
common and others somewhat novel, that form a basic toolkit for small
clinical studies. Here the committee provides some basic guidance on types
of trial designs and analysis strategies that should be used and the circum-
stances in which they should be used. The reader should note that this guid-
ance is limited, and different approaches or combinations of these ap-
proaches may be more useful in a specific setting.

The committee has discussed a variety of analysis issues, including se-
quential analysis, hierarchical models, Bayesian analysis, decision analysis,
statistical prediction, meta-analysis, and risk-based allocation. When an in-
vestigator is attempting to better understand a dose-response relation or a
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response surface and has limited resources, sequential analysis is an ideal
technique. It allows an adaptive approach to the allocation of resources in
the most efficient way possible, such that one may identify an optimal dos-
age or set of conditions with the smallest number of participants.

When the data are collected in clusters, for example, from space mis-
sions or through collaboration with several clinics, hierarchical models, meta-
analysis, or statistical prediction strategies may be useful. When choosing
among these, consider the following. Meta-analysis can be used if different
outcome or assessment measures are used for the different clusters such that
each cluster is a separate study. The advantage of meta-analysis is that it
allows one to combine information from studies or cluster samples that do
not share a common endpoint. By contrast, a hierarchical model can be used
if the studies or clusters contain both experimental and control conditions
and they all use the same endpoint. The hierarchical model will adjust the
standard errors of the estimated parameters for the within-cluster correla-
tion that is produced by sharing a common environment. Hierarchical mod-
els are also the method of choice when there are repeated measurements for
the same individuals, either over time or in a crossover study in which each
participant is subjected to two or more treatment conditions. In this case the
individual is the cluster and the hierarchical model is a method that can be
used to put together what are essentially a series of n-of-1 experiments with
a sample size of 1 (n-of 1 experiments). In some cases, however, each cluster
may contain only experimental participants and one wishes to compare the
clusters sequentially with a historical or parallel control group. Typically, the
latter groups are larger. Since control and experimental conditions are not
nested within clusters, hierarchical models do not apply and in fact would
confound the difference between experimental measurements and the con-
trol measurements within the random cluster effect. This case is treated,
however, as a problem of statistical prediction, in which the control mea-
surements are used to derive an interval that will contain a proportion of the
experimental measurements (e.g., 50 percent or the median) in each cluster
with a reasonable level of confidence.

By contrast, decision analysis, Bayesian approaches, and ranking and
selection are generally used to arrive at a decision about whether a particular
intervention is useful or better than some alternative. These approaches are
generally more subjective and may call for expert opinions to reach a final
decision. Bayesian methods underlie many of the methods described here,
including prediction, meta-analysis, and hierarchical models. Among these,
ranking and selection allow one to arrive at a statistically optimal solution
with a modicum of subjective inputs; however, decision analysis often allows
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a more complete characterization of a problem. Coupled with Bayesian
methods, decision analysis has the additional benefit of being able to assess
the sensitivity of the decision rule to various inputs or assumptions that went
into constructing the decision rule.

Finally, the committee has also presented risk-based allocation as a use-
ful tool for research with small numbers of participants. This method is
quite different from the others but can be useful for those cases in which it
may be unethical to withhold treatment from a high-risk population by ran-
domly assigning them to a control group.
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Appendix A
Study Methods

STRATEGIES FOR GATHERING INFORMATION

Traditional Literature Searches

Electronic Data Bases

The initial step in developing an evidence-based research base for the
study described in this report was a targeted search of the National Library
of Medicine’s Medline. The basic subject search terms included Bayesian,
sequential analysis, decision analysis, meta-analysis, and confidence profile
method. These are the methods of analysis that the committee had been
charged with assessing as they relate to the conduct of clinical trials with
small sample sizes. The search also used a combination of each subject search
term with descriptors such as models, statistical, clinical trials or randomized
clinical trials, phase I, phase II, phase III, small sample, and n-of-1. For ex-
ample, one set of subject search terms is “models, statistical[mh] AND se-
quential analysis AND (“clinical trials” OR “randomized clinical
trials”)[mh] AND phase I.” (MeSH is the abbreviation for medical subject
heading. [mh] is used as a tag to tell the search engine to look for the terms
in the MeSH fields of the Medline database.) Abstracts from the initial search
were reviewed for relevance to the committee’s charge and the more promi-
nent authors (defined by having published at least 10 articles) were deter-
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mined. Then a search by author name was done. A greater part of Appendix
C, Selected Bibliography on Statistical and Small Clinical Trials Research,
was the result of literature searches from the Medline database.

Databases such as Mathsci, Scisearch, and Pascal were used to verify the
bibliographic information in the statistics literature that Medline does not
cover. The Library of Congress Online Catalog and Social SciSearch were
also searched for specific titles and authors provided by committee mem-
bers.

Clinical Trials Listserv

A posting in a clinical trials listserv (clinical-trial@listserv.acor.org) that
requested literature on small-number clinical trials generated several sug-
gestions from all over the United States and a few from other countries.
Their abstracts were obtained from Medline and reviewed for relevance to
the study. Several suggestions that originated from responses to this listserv
posting are included in Appendix C.

Other Sources

Special attention was given to references included in benchmark publi-
cations on the subject of small-number clinical trials. Abstracts of these ref-
erences were also obtained from Medline. Several of these references are
included in Appendix C. Additionally, valuable suggestions for relevant lit-
erature came from statisticians in other units of The National Academies
and the Washington, D.C. academic community. Their suggestions are also
included in Appendix C.

Selections by Committee Members

The preliminary list of background literature was circulated to the com-
mittee members. During the first committee conference call, committee
members agreed to identify and submit to Institute of Medicine staff refer-
ences (included or not included in the preliminary list) that they believe
should be reviewed by the entire committee. The committee members’ se-
lections were then compiled, and copies were included in the first commit-
tee meeting briefing book for study by the committee members. Addition-
ally, through the duration of the project, other published literature and
unpublished data that committee members believed should be reviewed by
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the entire committee were obtained and circulated to the committee. Litera-
ture selections from committee members are added in Appendix C. Litera-
ture reviewed by the entire committee and used to prepare this report are
cited in the References section.

One-Day Invitational Conference

In fulfilling the second task of the committee, a 1-day conference was
convened on September 28, 2000, in Washington, D.C. More than 200 pro-
fessionals from federal research and regulatory agencies, academia, industry,
and other areas of clinical research and health care practice were invited to
participate. The conference focused on the state of the science, challenges,
and strategies in the design and evaluation of clinical trials of drugs,
biologics, devices, and other medical interventions with populations with
small numbers of individuals. Methods including randomized clinical trials,
sequential clinical trials, meta-analysis, and decision analysis were consid-
ered in terms of their potentials and their problems. Ethical considerations
and statistical evaluations and comparisons were also covered. The reader is
referred to the conference agenda, speakers, and participants at the end of
this appendix for more details.

Speakers’ Presentations

As part of the committee’s information-gathering process, the confer-
ence speakers were asked to discuss recent developments, problems, and
research needs in conducting clinical trials with small numbers of partici-
pants. In preparing their presentations, the speakers were asked to use two
scenarios formulated by the committee during its first committee meeting,
namely, (1) clinical trials to prevent bone loss in microgravity and (2) clinical
trials on split liver transplantations in patients with human immunodefi-
ciency virus infection and patients with fulminating liver failure. The confer-
ence format was organized to achieve balanced times for each speaker’s pre-
sentation followed by a discussion of the committee with the speakers and
invited participants. Overall, the speakers’ presentations helped the com-
mittee frame the issues and questions in its task of reviewing the methodolo-
gies for clinical trials with small sample sizes, determining research gaps and
needs, and making recommendations in the development of this area of
medical research.
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Speakers’ Recommended Literature

In a follow-up letter, the committee asked speakers to submit lists of
their recommended readings in their specific fields of expertise. They were
each asked for a minimum of 10 published articles: 5 of which they are
neither an author nor a coauthor and 5 of which they are an author or a
coauthor. The speakers’ recommended readings are also included in Appen-
dix C and, where relevant, in the References section.

Committee Website and Live Audiocast of Conference

The committee website (http://www.iom.edu/smalln) included a page
describing the September 28, 2000, conference. The page served the pur-
pose of disseminating information about the conference to a broader public
audience, beyond those professionals who were invited, who might have a
stake in the study. The page also allowed comments, suggestions, and ques-
tions on the study in general and on the conference in particular to be elec-
tronically mailed to Institute of Medicine staff.

The conference was carried on a live audiocast for the benefit of those
who were unable to attend. Two weeks before the conference date, a post-
card announcement of the live audiocast together with the conference
agenda and a one-page description of the conference were sent to invited
individuals who had not registered to attend and a wider national audience
unlikely to attend. This was done to ensure maximum dissemination of the
conference proceedings. After the conference the speakers’ visual and audio
presentations were posted on the committee’s website to allow the widest
continuing public access in this phase of the committee’s information-gath-
ering activities before the subsequent release of its report to the public.

PREPARING THE REPORT

Discussion of Committee’s Charge

At the first of three meetings, the committee reviewed the statement of
task, which it accepted with minor changes to make it accurate with regard
to statistical terminology and usage. The committee agreed that its composi-
tion was sufficient to accomplish the task given the work plan and time
schedule of 6 months. In fulfilling the committee’s charge, it was anticipated
that the study report would serve as a state-of-the science guide to those
interested in planning, designing, conducting, and analyzing clinical trials



APPENDIX A 109

with small numbers participants. The audience for the report was defined to
include federal agencies at the policy and program levels, researchers con-
cerned with conducting clinical trials, clinicians, students, patients, and pa-
tient advocacy groups.

Discussion of Committee’s Charge with Sponsor

In a telephone conference call during its first meeting, the committee
discussed with the study sponsor the statement of task. The sponsor pre-
sented a summary of the issues that it wanted the committee to address: (1) a
critique of the sponsor’s proposed methodology on countermeasure evalua-
tion; (2) suggestions for improvements to the proposed methodology or the
use of an alternate methodology; and (3) methods for the evaluation of treat-
ments, incorporation of data from surrogate studies, incorporation of treat-
ment compliance information, and sequential decision making on treatment
efficacy. The committee determined that, through the invitational confer-
ence and its final report, it would be able to meet the sponsor’s charge to the
committee.

Organization of the Report and
Committee Working Groups

The committee agreed to organize the report around four chapters,
which included an introduction (Chapter 1), a chapter on design of small
clinical trials (Chapter 2), a chapter on statistical approaches to analysis of
small clinical trials (Chapter 3), and a concluding chapter on general guide-
lines on small clinical trials (Chapter 4). Appendices include this one, on
study methods, a glossary of statistical and clinical trials terms (Appendix
B), a selected bibliography on small clinical trials research (Appendix C),
and committee and staff biographies (Appendix D). To facilitate writing of
the report, the committee formed two working groups: the clinical trials
group and the biostatistical group. The clinical trials group is primarily re-
sponsible for the content of Chapter 2, which focused on the design of clini-
cal trials with various numbers of small sample sizes. The biostatistical group
is primarily responsible for Chapter 3, which focused on the statistical analy-
ses applied to clinical trials with small sample sizes. The introduction and
Appendixes were written or assembled by study staff; the Statistical Analy-
ses section in this appendix was written by the committee, however.

During the third meeting, the committee focused on refining the con-
tent of the report and the committee’s principal findings and recommenda-
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tions. Due to the sponsor’s imposed time limitation on the study, the com-
mittee had only the third meeting to discuss as a group the implications of
the information collected. The committee felt that, given the time constraint,
it was unable to engage in the amount of deliberation it wished it could to
fully meet the task given to the committee for this important and developing
area of research. The committee as a whole is responsible for the informa-
tion included in the entire report.

CONFERENCE AGENDA

“Future Directions for Small n Clinical Research Trials”

National Academy of Sciences Lecture Room
2101 Constitution Avenue, N. W.
Washington, D. C.
September 28, 2000

8:25 a.m. Opening Remarks
Suzanne T. Ildstad, Chair of the Committee

8:30 Overview of the Science of Small n Clinical Research Trials
Martin Delaney, Founding Director, Project Inform

Design and Evaluation of Small n Clinical Research Trials

9:00 Design of Small n Clinical Research Trials
Curtis L. Meinert, Johns Hopkins University School of

Public Health

9:30 Quantitative Assessment of Countermeasure Efficacy for
Long-Term Space Missions

Alan H. Feiveson, Johnson Space Center, NASA

10:00 Sequential Design
Nancy Flournoy, The American University

10:30 Welcome
Kenneth I. Shine, M.D., President, Institute of Medicine

10:40 Break

11:00 Clinical Trials with n of > 1
Jean Emond, Center for Liver Disease and Transplantation,

New York Presbyterian Hospital
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11:30 Small Clinical Research Trials: Needs Beyond Space
Denise L. Faustman, Massachusetts General Hospital

12:00 Lunch Break

Statistical Methodologies for Small n Clinical Trials

1:00 p.m. Meta-Analysis and Alternative Methods
Betsy J. Becker, Michigan State University

1:30 Decision Analysis and Small Clinical Trials
Stephen G. Pauker, New England Medical Center

2:00 Bayesian Strategies for Small n Clinical Trials
Peter F. Thall, M. D. Anderson Cancer Center, Houston

2:30 n - of - 1 Clinical Trials
Deborah R. Zucker, New England Medical Center

3:00 Break

Development and Monitoring of Small n Clinical Trials

3:15 Research Needs in Developing Small n Clinical Trials
Helena Mishoe, National Heart, Lung and Blood Institute,

National Institute of Health

3:45 Regulatory Issues with Small n Clinical Research Trials
Jay Siegel, Office of Therapeutics Research and Review,

Food and Drug Administration

4:15 Ethical and Patient Information Concerns: Who Goes
First?

Lawrence K. Altman, New York University Medical School
and New York Times medical correspondent and author
of Who Goes First?: The Story of Self-Experimentation in
Medicine

4:45 Closing Remarks

5:00 Reception in the Great Hall of the National Academy of
Sciences
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STATISTICAL ANALYSES

Statistical Methods of Drawing Inferences

In the so-called frequentist mode of inference, there are three probabili-
ties of interest, the p value, the Type I error probability, and the Type II error
probability. In significance testing, as described by R. A. Fisher, the p value
is the probability of finding results that are at least as far away from the null
hypothesis as those actually observed in a given experiment, with respect to
the null probability model for the experiment. Note that because the null
hypothesis is assumed for the probability model, a p value can speak only to
how probable or improbable the data are in their departure from expecta-
tion under the null hypothesis. The p value does not speak to how probable
or improbable the null hypothesis is, because to do so immediately takes one
outside the probability model generating the data under the null hypothesis
(a Bayesian posterior probability addresses this –[see below]). Thus, it is
entirely possible that a result can have a small p value, indicating that the
data are unlikely to be so extreme in their departure from expectation under
the null hypothesis, and yet the null hypothesis may itself be very likely.
Anyone who has ever gotten a positive result on a screening examination
and found that result to be a false positive understands this point: under the
null hypothesis of no disease, the probability of a positive screening test
result is very small (the p value is small and highly significant). With rare
diseases, however, most of the positive results are false positives (i.e., the
null hypothesis is actually true in most of these cases).

In the Neyman-Pearson paradigm of hypothesis testing, it is imagined
that any experiment can be repeated indefinitely, and in each hypothetical
replication the null hypothesis will be rejected according to a fixed decision
rule. The Type I error describes the long-run proportion of times that the
null hypothesis will be so rejected, assuming in each case that it is actually
true. The Neyman-Pearson approach also considers various explicit alterna-
tive hypotheses and for each one quantifies the Type II error probability,
which is the long-run proportion of times that the decision rule will fail to
reject the null hypothesis when the given alternative is true.

The interpretation and use of Type I and Type II error probabilities are
quite distinct because they are calculated under different hypotheses. The
Type I error probability describes the largest p value that will be declared
statistically significant by chance alone when the null hypothesis is true. Be-
cause the Type I error probability gives the long-run proportion of instances
in which the decision procedure will err by rejecting a true null hypothesis,
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it is used to control the occurrence of false positives. The Type II error
probability is related to the ability of the test to arrive at a proper rejection of
the null hypothesis under any one of the non-null-hypothesis alternatives of
interest. The statistical power of a hypothesis test is the probability comple-
mentary to the Type II error probability, evaluated at a given alternative, and
generally depends on the decision criterion for rejection of the null hypoth-
esis, the probability model for the alternative hypothesis, and the sample
size.

The Type II error probability (or, equivalently, the statistical power) is
important in the planning stage of an experiment, because it indicates the
likelihood that a real phenomenon of interest will be declared statistically
significant, thus helping the investigator avoid the time and expense of con-
ducting an experiment that would be hopeless at uncovering the truth. The
meaning of a failure to reject the null hypothesis by a low-power test proce-
dure is difficult to interpret, because one cannot distinguish between no
true effect or an experimental inability to find one even if it exists. (After an
experiment is concluded, however, the Type II error probability has less
relevance as a measure of the uncertainty than does a confidence interval or
region for the parameter or parameters of interest.)

An important theoretical criticism of all of the above frequentist ap-
proaches is that the main questions of scientific inference are not addressed:
given the results of an experiment, (i) what is the weight of the evidence in
favor of one hypothesis and against another? (ii) what should the investiga-
tor believe is true? and (iii) what steps should now be taken? These three
questions require different answers.

It is a common misconception that the p value is a valid measure of
evidence against the null hypothesis—the (misguided) notion being that the
smaller the p value, the stronger the evidence. Although in many common
situations there is a useful correspondence between the p value and a proper
notion of evidence, there are many other examples in which the p value
utterly fails to serve as a cogent measure of weight of evidence. There is a
strong argument that any measure of evidence must be a relative one (one
hypothesis versus another). One sees immediately that the p value cannot be
a proper measure of the weight of evidence against a null hypothesis relative
to a given alternative, because the p value entirely ignores all alternatives,
being solely concerned with null hypothesis probabilities. Thus, it is entirely
possible for an observed p value of 0.0001 to be weak evidence against a
given null hypothesis (e. g., if the probability of observing the data is even
more unlikely to occur under a given alternative).

Although certain technical details are still under discussion, statisticians
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generally acknowledge that an appropriate measure of the weight of evi-
dence of one hypothesis relative to that of another is provided by the likeli-
hood ratio, which is the probability of the observed data under the first
hypothesis divided by the probability of the observed data under the second
one. (The probabilities here are point probabilities, not tail probabilities.)
As a descriptive device, a likelihood ratio of 8 or more is sometimes taken as
“fairly strong” evidence in favor of the first hypothesis relative to the second
one, whereas a likelihood ratio of 32 or more would be taken as “strong”
evidence. These adjectives and their boundaries are arbitrary, of course, but
correspond to useful benchmarks in inferential settings. See Royall (2000)
for further discussion and references to these ideas.

For example, in screening a population for a certain disease, suppose
the screening test has a sensitivity of 0.90 and a specificity of 0.95. These are
values that can be measured in a laboratory setting (e.g., by testing a large
number of known patients with the disease and, in another series, a large
number of healthy subjects without the disease). What is the weight of evi-
dence in favor of disease as opposed to no disease given a positive test re-
sult? The answer is not 5 percent, which would be the p value (the probabil-
ity of a rejection of the null hypothesis of no disease given no disease in truth
is the complement of the specificity). The likelihood ratio is an arguably
better measure of the weight of evidence provided by a positive test result:
since the probability of a positive test result under the hypothesis of true
disease is 0.90 while the probability of a positive test under the alternative of
no disease is 1 – 0.95 = 0.05, the likelihood ratio is 0.90/0.05 = 18 in favor of
disease. This is an objective measure of the relative likelihood of the data
under the two hypotheses and may be taken as a quantitative measure of
weight of evidence, which is “fairly strong” in the adjectival descriptive
scheme given above.

Should a patient with a positive test result believe he or she has the
disease? This is question (ii) above and takes one directly into the Bayesian
framework (see Chapter 3). The Bayesian framework allows one to quantify
degrees of subjective belief and to combine the “objective” data with “sub-
jective” prior beliefs to arrive at an a posteriori degree of belief in a hypoth-
esis or theory. In the simplest case, the fundamental result of Bayes’s theo-
rem states that the posterior odds in favor of one hypothesis relative to
another hypothesis is given by the prior odds multiplied by the likelihood
ratio. Thus, the Bayesian paradigm reveals the role of the weight of evidence
as measured by the likelihood ratio (or the so-called Bayes factor in more
complicated settings) as that which increases or decreases one’s prior odds
in light of the data to yield one’s posterior odds (and thus the a posteriori
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degree of belief). In the screening example, whether or not the patient should
believe he or she has the disease depends on the prior degree of belief. If
there are no other signs or symptoms for this patient before the screening
test, then the prior probability of disease may logically be taken as the gen-
eral prevalence of the disease in the screened population, which may be low,
say, 0.01 for the sake of discussion. In that case the prior odds (degree of
belief) would be 0.01/0.99, or approximately 0.0101, which, when multi-
plied by the “fairly strong” evidentiary likelihood ratio of 18, yields a poste-
rior odds of only 0.1818 in favor of disease, corresponding to a posterior
degree of belief of only 15.4 percent in favor of disease. (Even without ap-
pealing to subjective degree of belief, this result indicates that about 85 per-
cent of the positive results will be false-positive results in the general popu-
lation.) On the other hand, if the patient has other symptoms that may be
related to the disease (and might have prompted use of the screening test for
diagnostic purposes), then the a priori odds on the disease would be corre-
spondingly higher. If the patient or his physician believes that there is a 10
percent chance of disease before the test results are known, then the prior
odds of 0.10/0.90 = 1/9 multiplied by the likelihood ratio of 18 yields poste-
rior odds of 2, or an a posteriori degree of belief of 2/3 in favor of disease.
This example also illustrates how two experts in a courtroom proceeding
can look at the same body of evidence and arrive at opposite conclusions: a
given weight of evidence may be convincing to someone with high prior
odds, but unpersuasive to another with low prior odds.

Question (iii), what steps should be taken next?, is the subject of formal
decision theory discussed in Chapter 3.

The committee concludes this section on statistical methods of drawing
inferences with the statement that should be obvious by this point: there is
no unique solution to the problem of scientific induction. Consequently, the
various ways of drawing statistical inferences and the various probability
measures should always be used with some caution, and with a view toward
using the methods that are best suited to address the applied problem at
hand.

Statistical Derivation of Prediction Limits

The following sections describe statistical derivation of nonparametric,
normal, lognormal, and Poisson prediction limits and intervals in some de-
tail, using the astronaut problem as an illustration.
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Nonparametric Prediction Limits

Recall that α is the false positive rate for a single endpoint and that α* is
the experiment-wise false positive rate for all k endpoints. Under the conser-
vative assumption of independence, the Bonferroni inequality gives α = α*/
k. For simplicity of notation, we do not index the p sets of measurements for
each of the k endpoints, only for a single endpoint. Note that in practice, the
endpoints may be correlated and the actual confidence level provided by the
method will be somewhat higher than the estimated value.

To understand the implications of various design alternatives on the re-
sulting experiment-wise confidence levels, let y(si; ni) denote the sith largest
value (i.e., order statistic) from the ni astronauts on spaceflight i (i = 1, . . . ,
p) and let x (u,n) denote the uth order statistic from a group of control astro-
nauts of size n. One can now express the previous discussion mathematically
as

Pr , ,..., ,( , ) ( , ) ( , ) ( , ) ( , ) ( , )
*y x y x y xs n u n s n u n s n u np p1 1 2 2

> > >{ } ≤ α

where α* is the experiment-wise rate of false-positive results (e.g., α* = 0.05).
To evaluate the joint probability note that the probability density function of
the uth order statistic from a sample of size n [i.e., x (u,n)] is
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the joint probability is then

n

n n

n

J

n

j

n

s
n

u

n n

j u
i
p

i

p

p

i
p

i

i
p

i

j

s

j

s

j

s

p

pi

= =

=

=

−

=

−

=

−

+



















−
−







+ −
+ −











=
∑ ∑

∑

∑∑∑
1

1

1

2

2

1

1

0

1

0

1

0

1

1

1

1

1
2

2

1

...

...

,α

(Chou and Owen, 1986; Gibbons, 1990, 1991, 1994). A lower bound on the
probability of the sith largest experimental measurement (e.g., the median)
in all p spaceflights exceeding the uth largest control measurement for any of
the k outcome measures is given by α* = 1 – (1 – α)k . One minus this
probability provides the corresponding confidence level. Ultimately, for
practical applications one would typically like the overall confidence level to
be approximately 95% (i.e., α* ≤ 0.05).

To determine if an outcome measure is significantly decreased in experi-
mental astronauts relative to control astronauts, let x (l,n) denote the lth small-
est measurement from the group of control astronauts of size n. Then the
equation becomes
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The probability of the sith largest experimental measurement (e.g., the
median) in all p spaceflights being simultaneously less than the lth smallest
control measurement for any of the k outcome measures is given by α* = 1 –
(1 – α)k , and 1 minus this probability provides the corresponding confi-
dence level. For a two-sided interval, one can compute upper and lower
limits each with probability α* /2. If si is the median of the ni experimental
measurements in spaceflight i, then the upper prediction limit can be com-
puted with probability approximately α*/2, and the lower limit is simply the
value of the l = (n – u + 1)th ordered measurement.
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Parametric Prediction Limits

Although nonparametric prediction limits are most general, in certain
cases the distributional form of a particular endpoint is well known and a
parametric approach is well justified. Most relevant to this type of applica-
tion are normal, lognormal, and Poisson prediction intervals. The reader is
referred to the books by Guttman (1970), Hahn and Meeker (1991), and
Gibbons (1994) for a general overview.

Normal Distribution

For the case of a normally distributed endpoint, one can derive an ap-
proximate prediction limit by noting that the experiment-wise rate of false
positive results α* can be achieved by setting the individual endpoint rate of
false-positive results α equal to

α α= − −( )
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As an example, let α* equal 0.05 and k equal 10 endpoints. For p equal to 1
(i.e., a single space mission),

α = − −( )
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which would lead to quite limited statistical power to detect a significant
difference for any single endpoint. By contrast, with p equal 2 (i.e., two
space missions),

α = − −( )





=1 1 05 0 072
1

10

1
2

. . ,

which would require a much smaller effect size to declare a significant dif-
ference. With p equal to 3

α = − −( )
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which can be used to detect an even smaller difference. Assuming normality,
the 100 (1 – α) percent upper prediction limit (UPL) for the mean of the ni
experimental subjects in replicate i, for i = 1, . . . , p, is given by

UPL = + +
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where x  and s are the means and standard deviation of the n control mea-
surements, respectively, and t is the 1 – α upper percentage point of Student’s
t – distribution on n – 1 degrees of freedom. For example, if n is equal to 20,
ni is equal to 5, p is equal to 3, and k is equal to 10, then the prediction limit
is

UPL = + + = +x s x s0 97
1
5

1
20

0 49. . .

By contrast, with p = 1, the corresponding prediction limit is almost three
times larger, i.e.,

UPL = + + = +x s x s2 86
1
5

1
20

1 43. . .

The corresponding lower prediction limit (LPL) is given by
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and the two-sided prediction interval (PI) is
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Note that this solution is approximate because it ignores the dependency
introduced by comparing each of the p source sets with the same control
group. The magnitude of the correlation is

r
n
n

n
n

ij

i j

=
+







+







1

1 1 .

For n equal to 20 and ni equal to nj which is equal to 5, the correlation (r) is
0.2. Incorporation of this correlation into the computation of the prediction
limit is complex and requires computation of the relevant critical values
from a multivariate t - distribution (Dunnett, 1955; Gibbons, 1994). The
approximate prediction limits presented above, which assume indepen-
dence, will slightly overestimate the true values that incorporate the depen-
dence, but are much easier to compute.

Lognormal Prediction Limits

Note that it is often tempting to attempt to bring about normality by
transforming the raw data and then applying the above method to the trans-
formed data. A natural choice is to take natural logarithms of the raw data,
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compute the normal limit on the transformed data, and exponentiate the
resulting limit estimate. Although this is a perfectly reasonable approach, it
should be noted that the exponentiated limit is for the geometric mean of
the ni experimental sources (i.e., the median) and not the arithmetic mean
intensity, which will always be larger than the median if the data are, in fact,
from a lognormal distribution. Nevertheless, this can be a useful strategy if
the raw intensity data are highly skewed. Bhaumik and Gibbons (submitted
for publication) have developed a lognormal prediction limit for the mean
of ni future samples.

Poisson Distribution

For endpoints that are the result of a counting process, a Poisson dis-
tribution may be a reasonable choice for statistical purposes. To construct
such a limit estimate, assume that y, the sum of n control measurements, has
a Poisson distribution with mean µ. Having observed y one needs to predict
y*, the sum of ni experimental measurements, which has a Poisson distribu-
tion with mean cµ In the present context, c is equal to ni/n. On the basis of a
result of Cox and Hinkley (1974), Gibbons (1987) derived the correspond-
ing UPL for y* as
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where z is the 100(1 – α) percentage point of the normal distribution. In this
context, the prediction limit represents an upper bound on the sum of the
measurements of the ni experimental subjects in replicate i and α is defined
in the first equation in the section Normal Distribution. The experimental
condition is only considered significantly different from control only if the
sum of the ni experimental measurements exceeds the UPL for y* in all p
experimental replicates (e.g., space missions). The corresponding LPL
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and the two-sided PI is obtained by substituting z [1 – α/2] into the previous
two equations.

The General Linear Hierarchical Regression Model

To describe the general linear hierarchical regression model in a general
way for data that are either clustered or longitudinal, the terminology of
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multilevel analysis can be used (Goldstein, 1995). For this, let i denote the
Level - 2 units (clusters in the clustered data context or subjects in the longi-
tudinal data context), and let j denote the Level - 1 units (subjects in the
clustered data context or repeated observations in the longitudinal data con-
text). Assume that there are i = 1, . . . N Level - 2 units and j = 1, . . . ; ni Level
- 1 units nested within each Level - 2 unit. The mixed-effects regression
model for the ni x 1 response vector y for Level - 2 unit i (subject or cluster)
can be written as

y W Xi i i i i= + + =α β ε        Ni 1,... ,

where Wi is a known ni x p design matrix for the fixed effects, ααααα is the p x 1
vector of unknown fixed regression parameters, Xi is a known ni x r design
matrix for the random effects, and βββββi is the r x 1 vector of random individual
effects, and εεεεεi is the ni x 1 error vector. The distribution of the random
effects is typically assumed to be multivariate normal with mean vector 0
and covariance matrix ∑, and the errors are assumed to be independently
distributed as multivariate normal with mean vector 0 and covariance ma-
trix Σ Ωε σε= 2

i. Although Ωi carries the subscript i, it depends on i only
through its dimension ni , that is, the number of parameters in Ωi will not
depend on i. In the case of independent residuals, Ωi is equal to Ii , but for
the case of longitudinal designs, one can define ω to be the s x 1 vector of
autocorrelation matrix (Chi and Reinsel, 1989).

Different types of correlation structures have been considered including
the first-order autoregressive process AR(1), the first-order moving average
process MA(1), the first-order mixed autoregressive-moving average pro-
cess ARMA(1,1), and the general autocorrelation structure. A typical as-
sumption in models with correlation structures is that the variance of the
errors is constant over time and that the covariance of errors from different
time points depends only on the time interval between these time points and
not on the starting time point. This assumption, referred to as the stationarity
assumption, is assumed for the aforementioned forms. Another form of cor-
relation structures is described by Mansour and colleagues (1985), who ex-
amine correlation structures that follow the first-order autoregressive pro-
cess, however, where the assumption of stationarity is relaxed.

As a result of the above assumptions, the observations yi and random
coefficients βββββ have the joint multivariate normal distribution
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The mean of the posterior distribution of βββββ, given yi , yields the empiri-
cal Bayes (EB) or EAP (expected a posteriori) estimator of the Level 2 ran-
dom parameters,

β σ σ αε β εi i i i i i iy W= ′( ) +
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with the corresponding posterior covariance matrix given by
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Details regarding estimation of ∑β, α, σ2
ε and ω were originally introduced

by Laird and Ware (1982).

Empirical Bayes Methods and Risk-Based Allocation

Why are empirical Bayes methods needed for analysis of experiments
with risk-based allocation? There are two reasons: first, the natural hetero-
geneity from subject to subject requires some accounting for random ef-
fects; and second, the differential selection of groups due to the risk-based
allocation is handled perfectly by the “u - v” method introduced by Herbert
Robbins. This section considers both of these ideas in a little detail.

Consider the following simple model. Let a be a prespecified nonnega-
tive integer, and let X be a count variable observed pretreatment. Given an
unobservable nonnegative random variable θ, which varies in an arbitrary
and unknown manner in the population of subjects under study, assume
that X has a Poisson distribution with mean θ. Now, let Y be another count
variable, observed postreatment, and given both X and θ, we suppose that Y
has a Poisson distribution with mean c0θ if X is ≤ a or mean c1θ if X is >a. In
symbols, X|θ ~ P(θ), θ~G(θ) unknown, and Y|X, θ ~ P(cI(X)θ), where the
index I(X) = I[X > a] is the indicator that X exceeds a. This model reflects
the risk-based allocation design: if X is ≤a the subject is at low risk and the
standard treatment is given, where the treatment is assumed to operate mul-
tiplicatively on θ by the effect size c0, whereas if X is >a, the subject is at high
risk and an experimental treatment is given, where the treatment is again
assumed to operate on θ multiplicatively, but with a possibly different effect
size, c1. (In the risk-based design, one does not need to assume the Poisson
distribution for Y given X and θ, but only that the conditional mean of Y
satisfies E[Y|X, θ] = cI(X)θ. The Poisson assumption is made for convenience
in this discussion.) How can one estimate the effect sizes c0 and c1 in light of
the fact that θ is an unobservable trait of the subjects with unknown distri-
bution?
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Notice that θ usually cannot be ignored and a simple model for Y as a
function of X is assumed. This is because the correct mean of Y given X
alone is seen upon integration to be E[Y|X] = cI(X)E[θ|X], but the mean of θ
for given values of X can be a highly complicated function and is generally
unknown since the distribution G is unknown. The only distributions on θ
for which E[θ|X] is a simple linear function of X is the family of gamma
distributions, the so-called conjugate prior for the Poisson distribution. Un-
less there is an empirical basis for assuming the conjugate prior, however,
the posterior mean of θ given X will not be linear. (This simple fact is what
separates empirical Bayes methods from subjective Bayes methods, in which
a gamma prior would often be assumed, gratuitously in many cases.)

A simple ratio of averages also cannot be taken because of the different
treatments. If there were only a single treatment (the case in which a is equal
to ∞), one could estimate c0 consistently by the ratio of the average Y to the
average X, because E[Y] = E{E[Y|X, θ]} = E{c0θ} = c0E[θ] = c0E[X]. Where
there are two treatment effects for X ≤ a and X > a, however, it can be shown
that avg{Y}/avg{X} is an inconsistent (biased) estimator of both treatment
effects. A better tool is needed.

Enter the Robbins u-v method. Robbins and Zhang (1991) proved the
following theorem. If u(x) is any known function, then under the assump-
tion X|θ ~ P(θ), with the distribution of θ arbitrary, the expected value of θ
times u(X) is E[θu(X)] = E[Xu(X-1)]. This result is called the fundamental
empirical Bayes identity for the Poisson case and is remarkable because it
expresses an unknown expectation of an unobservable quantity on the left
in terms of an expectation of an entirely observable, hence estimable, quan-
tity on the right.1 Here’s how this result is applied to the problem. First, let
u(x) = I[x ≤ a] be the indicator that standard treatment has been assigned.
One finds an expression for treatment effect c0 as follows. First, note that
E[Yθ(X)|X, q] = u(X)c0θ, because the expression is non-zero only for X ≤ a.
Taking expectations of both sides with respect to the joint distribution of X
and θ, and applying the fundamental identity, one finds

E Yu X c E u X c E Xu X c E XI X a[ ( )] [ ( )] [ ( )] { [ ]}.= = = ≤ +0 0 0 1θ  –  1   

Consequently, one has c0 = E{YI[X ≤ a]}/E{XI[X ≤ a +1]}, which can
easily be estimated: simply sum the values of the endpoint Y among those
subjects with X ≤ a and divide by the sum of the values of X among all those

1 The u-v method of estimation gets its name because Robbins considered problems in which
for a given function u(x) there is another function ν(x) such that E[θu(X)] is equal to E[ν(X)].
In the Poisson case, the equation is ν(x) = xu(x-1).
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with X ≤ a + 1 at the baseline. The Law of Large Numbers ensures that the
ratio is a consistent estimator as the sample size of subjects increases.

As an illustration, consider the motorist example presented in Box 2-6
in Chapter 2. Suppose one wanted to find out if there was a multiplicative
temporal effect on the accident-proneness parameter θ between year 1 and
year 2 for the subset of drivers with zero accidents. This is the case in which
a is equal to 0. The empirical Bayes estimate of c0 is given by the observed
total number of accidents in year 2 (γ) for those with zero accidents in year 1
(X = 0), divided by the sum of the values of X among all those with X ≤ 1 in
year 1, which is just the number of drivers with exactly one accident at the
baseline. Thus, the prediction procedure discussed in Chapter 2 under the
assumption that c0 is equal to 1 has been converted into an estimation proce-
dure for treatment effect in an assured allocation design. If an active treat-
ment rather than simply the passage of time was applied, its effect would be
included in the parameter c0.

An analogous result applies for estimation of c1 among the high-risk
subjects with a > 1. In this case c1 = E{YI[X > a]}/E{XI[X > a+1]}, which
can be estimated by summing the values of the endpoint Y among those
subjects with X > a, and dividing by the sum of the values of X among all
those with X > a + 1 at the baseline. For example, the temporal effect on
accident proneness for those drivers with one or more accidents in the
baseline year can be estimated by the observed total number of accidents in
the next year among those with one or more accidents in the baseline year
divided by the total number of accidents suffered by all those with two or
more accidents in the year baseline (and the denominator is an unbiased
predictor of the numerator under the null hypothesis c1 is equal to 1).

The above theory is called semiparametric because of the parametric
Poisson assumption and the nonparametric assumption concerning the dis-
tribution of θ. The committee closes this section with some remarks on a
completely nonparametric estimation procedure with use of an auxiliary vari-
able. The assumption that X has a Poisson distribution is now dropped, with
only the assumption retained that whatever the distribution of X given θ,
E[X|θ] is equal to θ. This is really just a definition of θ. For the endpoint
variable Y, assume a model for expectations that encompasses both an addi-
tive and a multiplicative effect model for standard treatment:

E Y X a bX c0[ | , ] ,θ θ= + +

where the subscript on the expectation indicates standard treatment. The
model allows the expectation of Y to depend on X because treatment mo-
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dality (e.g., the dosage of a standard therapeutic drug) may depend on the
observed baseline measurement. In the risk-based design, one wants to use
the model to estimate the mean response for those at higher risk (with, say, X
> a) under standard treatment, but note that just as in the Poisson case, the
model for Y given X alone is generally not a linear model in X, because
generally E[θ|X] is not linear in X, unless θ has a conjugate prior relative to
X.

Now assume that there is an auxiliary variable, X′, also measured before
treatment. X′ may be a replicate measurement of X (e.g., a second blood
assay), a concomitant measure of risk, or a baseline version of the endpoint
Y. X′ need not be independent of X, even conditionally given θ. It is as-
sumed that X′ is similar to Y in the sense that for some constants a′, b′, and
c′≠ 0,

E X X a b X c[ '| , ] ' ' ' ,θ θ= + +

It follows that the variable Y - (c/c′)X′ does have a simple linear expectation
in X:

E Y c c X X a b X0[ ( ') | ] * * ,− ′ = +

where a* is equal to a – (c/c′)a′ and b* is equal to b – (c/c′)b′. If the ratio c/c′
is known, the model can be used with ordinary estimates of a* and b* from
the subjects on standard treatment to estimate (predict) what the high-risk
patients would have yielded for Y – (c/c′)X′. The treatment effect is esti-
mated using observed values of Y – (c/c1)X1 together with the relation

Treatment effect = E1[Y|X > a] – E0[Y|X > a] = E1[Y – (c/c′)X′|X > a] – E0[Y
– (c/c′)X′|X > a]

which holds because the expectations of X′ given X are the same under E0 or
E1 as both X and X′ are measured pretreatment. If the ratio c/c1 is not known,
it can be estimated for the subjects under standard treatment by special
methods (details omitted).

In the cholestyramine example (see Box 2-7), the allocation variable X
was a baseline measurement of the total serum cholesterol level. The auxil-
iary variable X′ was another measurement of the total serum cholesterol
level taken 4 months after all subjects were given dietary recommendations
but before randomization to cholestyramine or placebo. The analysis as-
sumed the ratio c/c′ was equal to 1, so that the simple change scores Y – X′
were linearly related to X, even though Y itself would generally be a nonlin-
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ear function of X. Then the treatment effect of cholestyramine versus pla-
cebo among the high cholesterol subjects was estimated by the observed
average of Y – X′ among those taking cholestyramine minus the predicted
value of Y – X′ among the same patients if they had taken placebo, with the
latter quantity estimated by a* + b*X evaluated at the average values of X
among the subjects with high cholesterol levels. For further details, see
Finkelstein et al. (1996) and Robbins (1993).

These results often surprise even the best statisticians. Robbins’ general
empirical Bayes theory is both elegant and nontrivial. In the Poisson case the
point and interval predictions of the number of accidents to be had in year 2
by those drivers with zero accidents in year 1 are applications of general (i.e.,
semiparametric) empirical Bayes theorems for mixtures of Poisson random
variables. The interested reader may want to consider the results in a little
more detail. Let the random variable X denote the number of accidents in
year 1 for a given motorist and let random variable Y denote the number of
accidents in year 2 for the same motorist. Let random variable q denote the
unobservable accident proneness parameter for that motorist. The model
under consideration makes three assumptions:

(i) θ has an unknown distribution G with finite expectation;
(ii) given θ, the distribution of X is Poisson with mean θ; and
(iii) given X and θ, the distribution of Y is also Poisson with mean θ.

Assumption (iii) is the null assumption that road conditions and driving
habits remain constant. The assumption implies that θ alone determines the
distribution of Y, irrespective of X. X and Y are unconditionally correlated
in ignorance of θ.

Now, let u(x) be any function of x. Two fundamental empirical Bayes
identities for Poisson random variables due to Robbins can be stated:

First-order empirical Bayes identity for Poisson variables:

E u X E Xu X[ ( ) ] [ (θ = –1)],

where the expectation is taken with respect to the joint distribution of X and
θ determined by (i) and (ii).

Second-order empirical Bayes identity for Poisson variables:

E u X E X X u X[ ( ) ] [ (θ 2 = –1) ( – 2)].
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The proofs of these assertions are elementary: one demonstrates them
first for conditional expectations given θ, pointwise for each θ. Then one
takes expectations with respect to G (details omitted).

In the application, let u(x) equal I[x equal 0], the indicator function for
x equal to 0. The key result for the point prediction is

E YI X P X{ [ ]} [ ].= = =0 1

To see this, write E[Yu(X)|X, θ] = u(X)E[Y|X, θ] = u(X)θ. Take expec-
tations with respect to (X, θ) and use the first identity: E[Yu(X)] = E[u(X)θ]
= E[Xu(X – 1)] = E{XI[X = 1]} = P[X = 1].

Thus in a population of n drivers, the predicted number of accidents in
year 2 among zero-accident drivers in year 1 is

E Y I X nP Xi i i{ [ ]} [ ],Σ = = =0 1

and using the sample estimate of P[X = 1], namely (number of drivers with
one accident)/n, one can conclude that the prediction is the number of driv-
ers with exactly one accident in year 1. For the 95 percent prediction inter-
val, the key result is that

E Yu X u X E YI X I X P X P X{[ ( ) ( )]} { [ ] [ ]} { [ ] [ ]}.− = = − = = = + =   1 2 20 1 2 1 2

The proof is as follows. Conditional on (X, θ),

E Yu X u X X

E Y u X X u X u X E Y X u X

u X u X u X u X
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The property var(Y|X, θ) = E[Y|X, θ] was used for Poisson variables in
the first term. By using u(x) equal to I[x = 0], the right-hand side reduces to
I[X = 0]( θ + θ2) + I[X = 1]. Thus, unconditionally, E{[Yu(X) – u(X – 1)]2} =
E{I[X = 0]θ} + E{I[X = 0]θ2} + P[X = 1], and using the first and second
fundamental identities, this reduces to

E XI X E X X I X P X P X P X{ [ ]} { ( ) [ ]} [ ] { [ ] [ ]}.= + = + = = = + =1 2 1 2 1 2   1

Thus, in a population of n drivers, the mean squared error of prediction
is

E Y I X I X n P X P Xi i I I[ { [ ] [ ]} ] { [ ] [ ]},Σ = = = = + =0 1 2 1 22   

which is consistently estimated by twice the number of drivers with exactly
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one or two accidents in year 1, as used in the 95 percent prediction interval
in the report by Finkelstein and Levin (1990).
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Appendix B
Glossary of

Statistical and
Clinical Trials Terms

Acceptance region The set of values of a test statistic for which the null
hypothesis is not rejected.

Acceptance sampling A sampling method by which the sample is taken from
groups or batches as they pass a specified time point, e.g., age, followed
by sampling of individuals within the sampled groups.

Acquired immunodeficiency syndrome (AIDS) The late clinical stage of
infection with human immunodeficiency virus (HIV), recognized as a
distinct syndrome in 1981.The surveillance definition includes HIV-in-
fected persons who have less than 200 CD4 + T lymphocytes per µL or a
CD4 + T lymphocyte percentage of total lymphocytes of less than 14
percent, accompanied by any of 26 clinical conditions (e.g., opportunis-
tic infection, Kaposi’s sarcoma, wasting syndrome).

Adaptive cluster sampling A procedure in which an initial set of subjects is
selected by a sampling procedure and, whenever the variable of interest
of a selected subject satisfies a given criterion, additional subjects whose
values are in the neighborhood of those for that subject are added to the
sample.

Adaptive sampling A sampling procedure in which the selection process
depends on the observed values of some variables of interest.

Additive effect A term used when the effect of administering two treatments
together is the sum of their separate effects.
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Additive model A model in which the combined effect of several factors is
the sum of the effects that would be produced by each of the factors in
the absence of the others.

Adjustment A procedure for summarization of a statistical measure in which
the effects of differences in composition of the population being com-
pared have been minimized by statistical methods. Examples are adjust-
ment by regression analysis and by standardization. See standardization.

Adverse event An undesirable or unwanted consequence experienced by a
subject during a clinical trial irrespective of the relationship to the study
treatment.

Age standardization A procedure for adjusting rates, e.g., death rates, de-
signed to minimize the effects of differences in age composition when
comparing rates for different populations.

Algorithm Any systematic process that consists of an ordered sequence of
steps in which each step depends on the outcome of the previous one.

Algorithm, clinical An explicit description of steps to be taken in patient
care in specified circumstances.

Alpha (α) The probability of a Type I error. The value of a is usually 0.05.
See significance level.

Alternative hypothesis The hypothesis against which the null hypothesis is
tested.

Analysis of covariance (ANCOVA) An extension of the analysis of variance
that allows consideration of the possible effects of covariates on the re-
sponse variable, in addition to the effects of the factor or treatment vari-
ables. The covariates are assumed to be unaffected by treatments, and in
general, their relationship to the response is assumed to be linear.

Analysis of variance (ANOVA) A statistical technique that isolates and as-
sesses the contributions of categorical independent variables to varia-
tions in the mean value of a continuous dependent variable. The total
variance of a set of observations are partitioned according to different
factors, e.g., sex, age, treatment groups, and compared by way of F tests.
Differences between means can then be assessed.

Arc sin transformation A transformation of the form 2 arc sin p , used to
stabilize the variance of a binomial random variable.

Area sampling A sampling method in which a geographical region is subdi-
vided into smaller areas (counties, villages, city blocks, etc.), some of
which are selected at random, and the chosen areas are then subsampled
or completely surveyed. See cluster sampling.

Area under curve (AUC) A useful way of summarizing the information from
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a series of measurements made on an individual over time or for a dose-
response curve. Calculated by adding the areas under the curve between
each pair of consecutive observations, using for example, the trapezium
rule.

Arithmetic mean The sum of all the values in a set of measurements divided
by the number of values in the set.

Assigned treatment The treatment designated to be given to a patient in a
clinical trial as indicated at the time of enrollment.

Association Statistical dependence between two or more events, character-
istics, or other variables. Most often applied in the context of binary
variables forming a two-by-two contingency table. A positive associa-
tion between two variables exists when the occurrence of higher values
of a variable is associated with the occurrence of higher values of an-
other variable. A negative association exists when the occurrence of
higher values of one variable is associated with lower values of the other
variable.

Assumptions The conditions under which statistical techniques give valid
results.

Attack rate The cumulative incidence of a disease or condition in a particu-
lar group, during a limited period of time, or under special circum-
stances such as an epidemic.

Attributable risk A measure of the association between exposure to a par-
ticular factor and the risk of a particular outcome, calculated as:
incidence rate among exposed – incidence rate among unexposed

incidence rate among exposed
Attrition The loss of subjects over the period of a longitudinal study. See

missing values.
Average An average value represents or summarizes the relevant features of

a set of values, and in this sense the term includes the median and the
mode.

Balanced design An experimental design in which the same number of ob-
servations is taken for each combination of the experimental factors.

Bar chart A graphical representation for displaying discrete data organized
in such a way that each observation can fall into one and only one cat-
egory of the variable. Frequencies are listed along one axis, and catego-
ries of the variable are listed along the other axis. The frequencies of
each group of observations are represented by the lengths of the corre-
sponding bars. See histogram.

Baseline data A set of data collected at the beginning of a study.
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Bathtub curve The shape taken by the hazard rate for the event of death in
humans. It is relatively high during the first year of life, decreases fairly
soon to a minimum, and begins to climb again sometime around ages 45
to 50.

Bayesian confidence interval An interval of a posterior distribution such
that the density at any point inside the interval is greater than the den-
sity at any point outside. For any probability level, there is generally
only one such interval, which is often known as the highest posterior
density region.

Bayesian inference Statistical inference based on Bayes’s theorem. The fo-
cus of the Bayesian approach is the probability distribution of any un-
knowns, given available information. The process deals with probabili-
ties of hypotheses and probability distributions of parameters, which
are not taken into account in classical statistical inference.

Bayes’s theorem A theorem in probability theory named after Thomas Bayes
(1702–1761), an English clergyman and mathematician. It is a proce-
dure for revising and updating the probability of some event in the light
of new evidence. In its simplest form, the theorem is written in terms of
conditional probabilities as:

P A B
P B A P A

P B
( ) =

( ) ( )
( )

where P(A|B) denotes the conditional probability of event A conditional
on event B. The overall probability of an event among a population
before knowing the presence or absence of new evidence is called prior
probability. The updated probability of the event after receiving new
information is called posterior probability.

Bell-shaped distribution A probability distribution having the overall shape
of a vertical cross-section of a bell. Examples are normal distribution
and Student’s t distribution.

Benefit-cost ratio The ratio of net present value of measurable benefits to
costs. Calculation of a benefit-cost ratio is used to determine the eco-
nomic feasibility or success of a program.

Beta (b) The probability of a Type II error.
Bias Deviation of results or inferences from the truth or processes leading to

such a deviation. Any trend in the collection, analysis, interpretation,
publication, or review of data that can lead to conclusions that are sys-
tematically different from the truth. Statistical bias occurs when the ex-
tent to which the statistical method used in a study does not estimate the
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quantity thought to be estimated or does not test the hypothesis to be
tested.

Bimodal distribution A probability distribution or a frequency distribution
with two modes.

Binary sequence A sequence whose elements take one of only two possible
values, usually denoted 0 or 1.

Binary variable A variable having only two possible values, usually labeled 0
or 1. Data involving this type of variable often require specialized statis-
tical techniques such as logistic regression.

Binomial distribution The probability distribution of the number of occur-
rences of a binary event in a sample of n independent observations. The
distribution is associated with two mutually exclusive outcomes, e.g.,
death or survival, success or failure.

Bioassay The quantitative evaluation of the potency of a substance by as-
sessing its effects on tissues, cells, live experimental animals, or humans.

Bioequivalence The degree to which clinically important outcomes of treat-
ment by a new preparation resemble those of a previously established
preparation.

Bioequivalence trials Trials carried out to compare two or more formula-
tions of a drug containing the same active ingredient to determine
whether the different formulations give rise to comparable levels in
blood.

Biological efficacy The effect of treatment for all persons who receive the
therapeutic agent to which they were assigned. It measures the biologi-
cal action of a treatment among compliant persons.

Biological plausibility The criterion that an observed, presumably or puta-
tively causal association fits previously existing biological or medical
knowledge.

Biometry The application of statistical methods to the study of numerical
data on the basis of observations of biological phenomena.

Biostatistics The application of statistical methods to biological and medical
problems.

Biplots A graphical display of multivariate data designed to show any struc-
ture, pattern, or relationship between variables.

Bit A unit of information consisting of one binary digit.
Bivariate data Data in which the subjects each have measurements on two

variables.
Bivariate distribution The joint distribution of two random variables, x

and y.
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Blinding A procedure used in clinical trials to avoid the possible bias that
might be introduced if the patient or doctor, or both, knew which treat-
ment the patient would be receiving. A trial is double blind if both pa-
tient and doctor are not aware of treatment given; if either the doctor or
the patient is not aware of treatment given, the trial is single blind. Also
called masking.

Block A term used in experimental design to refer to a homogeneous group-
ing of experimental units designed to enable the experimenter to isolate
and, if necessary, eliminate variability due to extraneous causes.

Block randomization A random allocation procedure used to keep the num-
bers of subjects in the different groups of a clinical trial closely balanced
at all times.

Blot, Western, Northern, Southern Varieties of tests using electrophoresis,
nucleic acid base pairing, or protein-antibody interaction to detect and
identify DNA or RNA in samples. The Southern blot is used to identify
a specific segment of DNA in a sample. The Northern blot detects and
identifies samples of RNA. The Western blot is widely used in a test for
detection of human immunodeficiency virus infection.

Bootstrap A data-based simulation method for statistical inference that can
be used to study the variability of estimated characteristics of the prob-
ability distribution of a set of observations and provide confidence in-
tervals for parameters in situations in which these are difficult or impos-
sible to derive in the usual way.

Bonferroni correction A procedure for guarding against an increase in the
Type I error when performing multiple significance tests. To maintain
the Type I error at some selected value, a, each of the m tests to be
performed is judged against a significance level, a/m. This method is
acceptable for a small number of simultaneous tests to be performed
(up to five).

Causality The relating of causes to the effects that they produce. A cause is
termed “necessary” when it must always precede an effect. This effect
need not be the sole result of the one cause. A cause is termed “suffi-
cient” when it inevitably initiates or produces an effect. Any given cause
may be necessary, sufficient, neither necessary nor sufficient, or both
necessary and sufficient.

Censored observation Observation with an unknown value due to the oc-
currence of an event (e.g., death, loss to follow-up, or termination of
study) before the occurrence of the event of interest in the study.
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Central limit theorem The tendency for the sampling distribution of means
to be a normal (Gaussian) distribution, even if the data do not have a
Gaussian distribution, for sufficiently large numbers of subjects.

Central range The range within which the central 90 percent of values of a
set of observations lie.

Central tendency A property of the distribution of a variable usually mea-
sured by statistics such as the mean, median, and mode.

Chimerism In genetics, the presence in an individual of cells of different
origin, such as of blood cells derived from a dizygotic cotwin.

Chi-square distribution The probability distribution of the sum of squares
of a number of independent standard normal variables.

Chi-square test Any statistical test based on comparison of a test statistic to
a chi-square distribution. The most common chi-square tests (e.g., the
Mantel-Haenszel and Pearson chi-square tests) are used to detect
whether two or more population distributions differ from one another.
These tests usually involve counts of data and may involve comparison
of samples from the distribution under study or comparison of a sample
to a theoretically expected distribution.

Chi-square test for trend A test applied to a two-dimensional contingency
table in which one variable has two categories and the other has k or-
dered categories to assess whether there is a difference in the trend of
the proportions in the two groups.

Clinical decision analysis A procedure designed to provide insight into the
structure of a clinical problem and to identify the main determinants of
diagnostic and therapeutic choice. This procedure is useful to small
numbers of clinical cases, even to a single patient (see n-of-1 study). The
procedure has four stages:

1. Definition of the clinical problem and structuring it as a decision
tree. This includes description of the patient, of the possible diagnostic
and therapeutic actions, and of the possible outcomes after treatment.

2. Estimation of probabilities for diagnostic and therapeutic out-
comes.

3. Performance of the requisite computations for determination of
the preferred course of action.

4. Presentation of the results of the analysis in a clinically useful way.

Clinical epidemiology Epidemiological study conducted in a clinical setting,
usually by clinicians, with patients as the subjects of study. It uses the
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information from classic epidemiology to aid decision making about
identified cases of disease.

Clinical trial A prospective study that involves human subjects, designed to
determine the effectiveness of a treatment, a surgical procedure, or a
therapeutic regimen administered to patients with a specific disease.
Clinical trials have four phases:

Phase I Safety and pharmacologic profiles. This involves the initial in-
troduction of a candidate vaccine or drug into a human population
to determine its safety and mode of action. In drug trials, this phase
may include studies of dose and route of administration. Phase I
trials usually involve less than 100 healthy volunteers.

Phase II Pilot efficacy studies. This initial trial aims to examine efficacy
in about 200 to 500 volunteers. The focus of vaccine trials is immu-
nogenicity, whereas with drugs the focus is on the demonstration of
safety and efficacy in comparison with those of other existing regi-
mens. Often, subjects are randomly allocated to study and control
groups.

Phase III Extensive clinical trial. This phase aims to complete assess-
ment of safety and efficacy. It involves large numbers, possibly thou-
sands, of volunteers from one center or many centers (a multicenter
trial), usually with random allocation to study and control groups.

Phase IV This phase is conducted after the national drug registration
authority (the Food and Drug Administration in the United States)
has approved the drug for distribution or marketing. The trial is
designed to determine a specific pharmacological effect or the ef-
fects of long-term use or to establish the incidence of adverse reac-
tions. Ethical review is required in phase IV trials.

Clinical versus statistical significance The distinction between results in
terms of their possible clinical importance rather than simply in terms of
their statistical significance. For example, very small differences that
have little or no clinical importance may turn out to be statistically sig-
nificant. The implications of any finding in a medical investigation must
be judged on both clinical and statistical grounds.

Clinimetrics The study of indices and rating scales used to describe or mea-
sure symptoms, physical signs, and other clinical phenomena in clinical
medicine.

Closed sequential design See sequential analysis.
Cluster analysis A set of statistical methods for constructing a sensible and
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informative classification of an initially unclassified set of data using the
variable values observed on each individual or item.

Cluster sampling A sampling method in which each unit (cluster) selected is
a group of persons (all persons in a city block, a family, a school, or a
hospital) rather than an individual.

Code of conduct A formal statement of desirable conduct that research
workers or practitioners are expected to honor. Examples are the Hippo-
cratic Oath, the Nuremberg Code, and the Helsinki Declaration.

Coefficient of concordance A measure of the agreement among several
rankings or categories.

Coefficient of determination The square of the correlation coefficient be-
tween two variables. It gives the proportion of the variation in one vari-
able that is accounted for by the other.

Coefficient of variation A measure of spread for a set of data, defined as 100
x standard deviation / mean. Originally proposed as a way of comparing
the variability in different distributions but found to be sensitive to er-
rors in the mean.

Collinearity Very high correlation between variables. See multicollinearity.
Comorbidity A disease(s) that coexist(s) in a study participant in addition to

the index condition that is the subject of study.
Conditional probability The probability that event A occurs given the out-

come of some other event, event B; usually written P(A|B). Conditional
probabilities obey all the axioms of probability theory. See Bayes’s theo-
rem.

Confidence interval The computed interval with a given probability, e.g., 95
percent, that the true value of a variable such as a mean, proportion, or
rate is contained within the interval.

Confidence limits The upper and lower boundaries of the confidence inter-
val.

Confidence profile method A method of meta-analysis that uses a set of
quantitative techniques that include parameters, functions, and prior
distributions (in a Bayesian application). Its goal is to use evidence to
derive maximum likelihood estimates and covariances (in a non-Baye-
sian application) or joint probability distributions (in a Bayesian appli-
cation) for parameters of interest. Distributions and estimates can be
used to make decisions about interventions or calculations of other pa-
rameters or to plan research to gather additional information about any
parameter.

Confounding A process observed in some factorial designs in which a mea-
sure of the effect of an exposure on risk is distorted because of the
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association of the exposure with some other factor(s) that influences the
outcome under study.

Confounding variable A variable that can cause or prevent the outcome of
interest, is not an intermediate variable, and is associated with the factor
under investigation.

Contingency table A tabular cross-classification of data such that subcatego-
ries of one characteristic are indicated horizontally (in rows) and sub-
categories of another characteristic are indicated vertically (in columns).
The simplest contingency table is the fourfold or two-by-two table ana-
lyzed by using the chi-square statistic. Three- and higher-dimensional
tables are analyzed by using log-linear models.

Continual reassessment method An approach that applies Bayesian infer-
ence to determine the maximum tolerated dose in a phase I trial. The
method begins by assuming a logistic regression model for the dose-
toxicity relationship and a prior distribution for the parameters. After
each patient’s toxicity result becomes available, the posterior distribu-
tion of the parameters is recomputed and used to estimate the probabil-
ity of toxicity at each of a series of dose levels.

Control group Subjects with whom comparison is made in a case-control
study, randomized controlled trial, or some other variety of epidemio-
logical study.

Controlled trial A phase III clinical trial in which an experimental treatment
is compared with a control treatment, the latter being either the current
standard treatment or a placebo.

Control statistics Statistics calculated from sample values X1, X2, . . ., Xn that
elicit information about some characteristic of a process that is being
monitored.

Correlation The degree to which variables change together.
Correlation coefficient An index that quantifies the linear relationship be-

tween a pair of variables. The coefficient takes values between –1 and 1,
with the sign indicating the direction of the relationship and the nu-
merical magnitude indicating its strength. A value of zero indicates the
lack of any linear relationship between two variables.

Correlation matrix A square, symmetric matrix with rows and columns cor-
responding to variables in which the off-diagonal elements are correla-
tions between pairs of variables and the elements on the main diagonal
are unity.

Cost-benefit analysis An economic analysis in which the costs of medical
care and the benefits of reduced loss of net earnings due to the preven-
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tion of premature death or disability are considered. The general rule
for the allocation of funds in a cost-benefit analysis is that the ratio of
marginal benefit (the benefit of preventing an additional case) to mar-
ginal cost (the cost of preventing an additional case) should be equal to
or greater than 1.

Cox’s proportional hazards model A method that allows the hazard func-
tion to be modeled on a set of explanatory variables without making
restrictive assumptions about the dependence of the hazard function on
time. Estimates of the parameters in the model, i.e., β1, β2, . . ., βp, are
usually obtained by maximum likelihood estimation and depend only
on the order in which events occur, not on the exact time of their occur-
rences.

Critical region The values of a test statistic that lead to rejection of a null
hypothesis. The size of the critical region is the probability of obtaining
an outcome belonging to this region when the null hypothesis is true,
i.e., the probability of a Type I error. See also acceptance region.

Critical value The value with which a statistic calculated from sample data is
compared to determine whether a null hypothesis should be rejected.
The value is related to the particular significance level chosen.

Cross-validation The division of data into two subsets of approximately
equal size, one of which is used to estimate the parameters in some model
of interest and the other of which is used to assess whether the model
with these parameter values fits adequately.

Cumulative frequency distribution A listing of the sample values of a vari-
able together with the proportion of the observations less than or equal
to each value.

Decision analysis An approach that involves identification of all available
choices and the potential outcomes of each in a series of decisions that
must be made about aspects of patient care: diagnostic procedures,
therapeutic regimens, and prognostic expectations. The range of choices
can be plotted on a decision tree, where at each branch or decision node
the probabilities of each outcome are displayed.

Decision function A concept used in decision analysis that tells the experi-
menter how to conduct the statistical aspects of an experiment and what
action to take for each possible outcome. See also loss function.

Decision tree A graphical representation of the alternatives available at each
stage in the process of decision making, where decision options are rep-
resented as branches and subsequent possible outcomes are represented
as further branches. The decisions and the eventualities are presented in
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the order in which they are likely to occur. The junction at which a
decision must be taken is called a “decision node.”

Degrees of freedom (df) The number of independent units of information
in a sample relevant to the estimation of a parameter or calculation of a
statistic. For example, in a contingency table it is one less than the num-
ber of row categories multiplied by one less than the number of column
categories. Also used to refer to a parameter of various families of distri-
butions, such as chi-square, Student’s t, and F distributions.

Dependent variable A variable whose value is dependent on the effect of
another variable(s)—an independent variable(s)—in the relationship
under study. In statistics, it is the variable predicted by a regression equa-
tion.

Descriptive statistics A general term for methods of summarizing and tabu-
lating data that make their main features more transparent, for example,
calculating means and variances and plotting histograms.

Deviance A measure of the extent to which a particular model differs from
the saturated model for a data set.

Dichotomous variable Synonym for binary variable.
Directionality The direction of inference of a study, i.e., retrospective or

prospective, or of the relationship between variables, such as a negative
or a positive association indicated by a correlation coefficient.

Discrete variables Variables having only integer values, e.g., number of births
or number of pregnancies.

Discriminant analysis A statistical analytical technique used on multivariate
data that aims to assess whether or not a set of variables distinguish or
discriminate between two (or more) groups of individuals. It separates
sets of observed values and allocates new values from two (or more)
discrete populations to the correct population with minimal probability
of classification.

Distribution The complete summary of the frequencies of the values or cat-
egories of a measurement obtained for a group of persons. It tells either
how many or what proportion of the group was found to have each
value (or each range of values) out of all the possible values that the
quantitative measure can have.

Distribution function A function that gives the relative frequency with which
a random variable falls at or below each of a series of values. Examples
include normal distribution, lognormal distribution, chi-square distri-
bution, t distribution, F distribution, and binomial distribution.

Dose-ranging trial A clinical trial, usually undertaken at a late stage in the
development of a drug, to obtain information about the appropriate
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magnitude of initial and subsequent doses. Most common is the paral-
lel-dose design, in which one group of subjects is given a placebo and
other groups are given different doses of the active treatment.

Dose-response curve A plot of the values of a response variable against the
corresponding values of the dose of drug received or level of exposure
endured.

Dose-response relationship A relationship in which a change in amount,
intensity, or duration of exposure is associated with a change—either an
increase or a decrease—in the risk of a specified outcome.

Double-blind trial A procedure of blind assignment to study and control
groups and blind assessment of outcome, designed to ensure that ascer-
tainment of outcome is not biased by knowledge of the group to which
an individual was assigned. Double refers to both subjects or patients
and observers or clinicians.

Dummy variables The variables resulting from recording of categorical vari-
ables with more than two categories into a series of binary variables.

Effect measure A quantity that measures the effect of a factor on the fre-
quency or risk of health outcome. Three such measures are attributable
fractions, which measure the fraction of cases due to a factor; risk and
rate differences, which measure the amount a factor adds to the risk or
rate of a disease; and risk and rate ratios, which measure the amount by
which a factor multiplies the risk or rate of disease.

Effect modifier A factor that modifies the effect of a putative causal factor
under study. For example, age is an effect modifier for many conditions,
and immunization status is an effect modifier for the consequences of
exposure to pathogenic organisms. Effect modification is detected by
varying the selected effect measure for the factor under study across
levels of another factor.

Efficacy The effect of a treatment relative to the effect a control treatment in
the ideal situation in which all persons fully comply with the treatment
regimen to which they were assigned by random allocation.

Endpoint A clearly defined outcome or event associated with an individual
in a medical investigation.  An example is the eath of a patient.

Equipoise A state of genuine uncertainty about the benefits or harms that
may result from each of two or more regimens. A state of equipoise is an
indication for a randomized controlled trial because there are no ethical
concerns about one regimen being better for a particular patient.

Error, Type I (α error) The error of rejecting a true null hypothesis, i.e.,
declaring that a difference exists when it does not.
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Error, Type II (β error) The error of failing to reject a false null hypothesis,
i.e., declaring that a difference does not exist when in fact it does.

Estimate Either a single number (point estimate) or a range of numbers
(interval estimate) which is inferred to be plausible for some parameter
of interest.

Estimation The process of providing a numerical value for a population
parameter on the basis of information collected from a sample. If a single
figure for the unknown parameter is calculated, the process is called
“point estimation.” If an interval within which the parameter is likely to
fall is calculated, the procedure is called “interval estimation.”

Exact method A statistical method based on the actual, i.e., “exact,” prob-
ability distribution of the study data rather than on an approximation
such as the normal or chi-square distribution, e.g., Fisher’s exact test.

Experimental study A study in which conditions are under the direct con-
trol of the investigator. A population is selected for a planned trial of a
regimen whose effects are measured by comparing the outcome of the
regimen in the experimental group with the outcome of another regi-
men in a control group. Clinical trials fall under this heading.

Explanatory trial A clinical trial designed to explain how a treatment works.

Factor A term that is used in a variety of ways in statistics but that is most
commonly used to refer to a categorical variable, with a smaller number
of levels, under investigation in an experiment as a possible source of
variation.

Factor analysis A set of statistical methods for analysis of the correlations
among several variables to estimate the number of fundamental dimen-
sions that underlie the observed data and to describe and measure those
dimensions.

Factorial design A method of setting up an experiment or study to ensure
that all levels of each intervention or classificatory factor occur with all
levels of the others and that their possible interactions are investigated.
The simplest factorial design is one in which each of two treatments or
interventions is either present or absent so that subjects are divided into
four groups: those receiving neither treatment, those receiving only the
first treatment, those receiving only the second treatment, and those
receiving both treatments.

False-negative rate The proportion of cases in which a diagnostic test indi-
cates that a disease is absent from patients who have the disease.

False-positive rate The proportion of cases in which a diagnostic test indi-
cates that a disease is present in disease-free patients.

F distribution The probability distribution of the ratio of two independent



144 APPENDIX B

random variables, each having a chi-square distribution, divided by their
respective degrees of freedom.

Fibonacci dose escalation scheme A scheme designed to estimate the maxi-
mum tolerated dose during a phase I clinical trial, using as few patients
as possible. Using the National Cancer Institute standards for adverse
drug reactions, the procedure begins patient accrual with three patients
at an initial dose level and continues at each subsequent dose level until
at least one toxicity of grade 3 or above is encountered. Once the latter
occurs, three additional patients are entered at that level and six pa-
tients are entered into each succeeding level. The search scheme stops
when at least two of six patients have toxicities of grade >3.

Fisher’s exact test The test for association in a two-by-two table that is based
upon the exact hypergeometric distribution of the frequencies within
the table. The procedure consists of evaluating the sum of the probabili-
ties associated with the observed table and all possible two-by-two tables
that have the same row and column totals as the observed data.

Fisher’s information matrix The inverse of the variance-covariance matrix
of a set of parameters.

Fisher’s z transformation A transformation of Pearson’s product moment
correlation coefficient, r, given by
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, where n is the sample size. The transfor-

mation may be used to test hypotheses and to construct confidence in-
tervals for p.

Fishing expedition A term used to describe comparisons made within a data
set not specifically prescribed before the start of the study.

Fitted value Refers to the value of the response variable predicted by some
estimated model.

Five-number summary A method of summarizing a set of observations by
using the minimum value, the lower quartile, the median, upper quartile,
and maximum value. Forms the basis of the box-and-whisker plot.

Fixed effects The effects attributable to a finite set of levels of a factor that
are of specific interest. For example, the investigator may wish to com-
pare the effects of three particular drugs on a response variable.
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Fixed effects model A model that contains only factors with fixed effects.
Frequency distribution See distribution.
F test A test for the equality of the variances of two populations having

normal distributions, based on the ratio of the variances of a sample of
observations taken from each. Commonly used in the analysis of vari-
ance, in which testing of whether particular variances are the same also
tests for the equality of a set of means.

Function A quality, trait, or fact that is so related to another as to be depen-
dent upon and to vary with this other.

Functional relationship The relationship between the true values of vari-
ables, i.e., the values obtained under the assumption that the variables
were measured without error.

Funnel plot A plotting device used in meta-analysis to detect publication
bias. The estimate of risk is plotted against sample size. If there is no
publication bias, the plot is funnel-shaped. Publication bias, in which
studies with significant results are more likely to be published than those
with small or no significant effects, removes part of the lower left hand
corner of the funnel.

Gaussian distribution A bell-shaped frequency distribution of infinite range
of a random variable. All possible values of the variable are displayed on
the horizontal axis. The frequency (probability) of each value is dis-
played on the vertical axis, producing the graph of the distribution. The
properties are as follows: (1) it is a continuous, symmetrical distribu-
tion; both tails extend to infinity; (2) the arithmetic mean, mode, and
median are identical; and (3) its shape is completely determined by the
mean and standard deviation. Another name for normal distribution.

Generalized linear models (GLMs) A class of models that arise from a natu-
ral generalization of ordinary linear regression. The function of the ex-
pected value of the response variable, y, is modeled as a linear combina-
tion of the explanatory variables, X1, X2, . . ., .Xq. The other components
of such models are a specification of the form of the variance of the
response variable and of its probability distribution.

Goodness-of-fit Degree of agreement between an empirically observed dis-
tribution and a mathematical or rhetorical distribution.

Goodness-of-fit statistics Measures of the agreement between a set of sample
observations and the corresponding values predicted from some model
of interest. Examples are chi-square statistic, deviance, and likelihood
ratio.

Group sequential design See sequential analysis.
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Half-normal plot A plot for diagnosing model inadequacy or revealing the
presence of outliers, in which the absolute values of, e.g., the residuals
from a multiple regression are plotted against the quantiles of the stan-
dard normal distribution. Outliers will appear at the top right of the
plot as points that are separated from the others, whereas systematic
departures from a straight line could indicate that the model is unsatis-
factory.

Hazard function The probability that an individual experiences an event
(death, improvement, etc.) in a small time interval, given that the indi-
vidual has survived up to the beginning of the interval. It is a measure of
how likely an individual is to experience an event as a function of the
age of the individual. The hazard function may remain constant, in-
crease, or decrease. See also survival function and bathtub curve.

Hazard rate A theoretical measure of the risk of occurrence of an event, e.g.,
death or a new disease, at a point in time, t, defined mathematically as
the limit, as ∆t approaches zero, or of the probability that an individual
well at time t will experience the event by t + ∆t, divided by ∆t.

Hazard regression A procedure for modeling the hazard rate that does not
depend on the assumptions made in Cox’s proportional hazards model,
namely, that the loghazard function is an additive function of both time
and the vector of covariates.

Heteroscedasticity Nonconstancy of the variance of a measure over the lev-
els of the factors under study.

Histogram A graphical representation of a set of observations, in which
class frequencies are represented by the areas of rectangles centered on
the class interval.

Homoscedasticity Constancy of the variance of a measure over the levels of
the factors under study.

Human immunodeficiency virus (HIV) The pathogenic organism respon-
sible for acquired immunodeficiency syndrome (AIDS).

Human leukocyte antigen (HLA) Antigens on cell surfaces that are impor-
tant for foreign antigen recognition and that play a role in the coordina-
tion and activation of the immune response.

Hypergeometric distribution The exact probability distribution of the fre-
quencies in a two-by-two contingency table, conditional on the mar-
ginal frequencies being fixed at their observed levels. Usually approxi-
mated by the binomial distribution.

Independent variable One of (perhaps) several variables that appear as ar-
guments in a regression equation.
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Indicator variable A variable that takes only one of two possible values, with
one (usually 1) indicating the presence of a condition and the other
(usually 0) indicating the absence of the condition. Used mainly in re-
gression analysis.

Informative censoring Censored observations that occur for reasons related
to treatment, e.g., when treatment is withdrawn as a result of a deterio-
ration in the physical condition of a patient.

Informative prior A term used in the context of Bayesian inference to indi-
cate a prior distribution that reflects empirical or theoretical informa-
tion regarding the value of an unknown parameter.

Informed consent The voluntary consent given by a patient to participate in,
usually, a clinical trial after being informed of its purpose, method of
treatment, procedure for assignment to treatment, benefits and risks
associated with participation, and required data collection procedures
and schedule.

Initial data analysis The first phase in the examination of a data set that
consists of a number of informal steps, including checking the quality of
the data, calculating simple summary statistics, and constructing appro-
priate graphs. The general aim is to clarify the structure of the data,
obtain a simple descriptive summary, and possibly get ideas for a more
sophisticated analysis.

Instantaneous death rate Synonym for hazard function.
Intention-to-treat analysis A procedure in which all patients randomly allo-

cated to a treatment in a clinical trial are analyzed together as represent-
ing that treatment, whether or not they received or completed the pre-
scribed regimen. Failure to follow this step defeats the main purpose of
random allocation and can invalidate the results.

Interaction The interdependent operation of two or more causes to produce
or prevent an effect.

Interim analysis Analysis made before the planned end of a clinical trial,
usually with the aim of detecting treatment differences at an early stage
and thus preventing as many patients as possible from receiving an “in-
ferior” treatment.

Intermediate variable (intervening or mediator variable) A variable that
occurs in a causal pathway from an independent to a dependent vari-
able. It causes variation in the dependent variable and is caused to vary
by the independent variable. Its value is altered to block or alter the
effect(s) of another factor. Such a variable is statistically associated with
both the independent and the dependent variables.
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Interquartile range A measure of spread given by the difference between
the first and third quartiles of a sample.

Interrupted time series design A study in which a single group of subjects is
measured several times before and after some event or manipulation.
Also used to describe investigation of a single subject. See n-of-1 clinical
trials.

Interval censored observations Observations that often arise in the context
of studies of time elapsed to a particular event when subjects are not
monitored continuously. Instead, the prior occurrence of the event of
interest is detectable only at specific times of observation, e.g., at the
time of medical examination.

Intervention study An investigation involving intentional change in some
aspect of the status of the subjects, e.g., introduction of a preventive or
therapeutic regimen, to test a hypothesis. Usually it is an experiment
such as a randomized clinical trial.

Iterated bootstrap A two-stage procedure in which the samples from the
original bootstrap population are themselves bootstrapped. The tech-
nique can give confidence intervals of more accurate coverage than
simple bootstrapping.

Iteration The successive repetition of a mathematical process, using the re-
sult of one stage as the input for the next.

Jackknife A technique for estimating the variance and the bias of an estima-
tor. If the sample size is n, the estimator is applied to each subsample of
size n – 1, obtained by dropping a measurement from analysis. The sum
of squared differences between each of the resulting estimates and their
mean, multiplied by (n – 1)/n, is the jackknife estimate of variance; the
difference between the mean and the original estimate, multiplied by (n
– 1), is the jackknife estimate of bias.

Kaplan-Meier estimate A nonparametric method of compiling life or sur-
vival tables. This combines calculated probabilities of survival and esti-
mates to allow censored observations, which are assumed to occur ran-
domly. The intervals are defined as ending each time that an event, (e.g.,
death or withdrawal) occurs and are therefore unequal.

Kappa coefficient A chance corrected index of the agreement between, e.g.,
judgments and diagnoses made by two raters. Calculated as the ratio of
the observed excess over chance agreement to the maximum possible
excess over chance, the coefficient takes the value unity when there is
perfect agreement and the value zero when observed agreement is equal
to chance agreement.



APPENDIX B 149

Kendall’s tau statistic Measures of the correlation between two sets of
rankings. Kendall’s tau statistic is a rank correlation coefficient based on
the number of inversions in one ranking compared with the number of
inversions in another, e.g., on S, given by S = P – Q, where P is the
number of concordant pairs of observations, that is, pairs of observa-
tions such that their rankings on the two variables are in the same direc-
tion, and Q is the number of discordant pairs for which rankings on the
two variables are in the reverse direction.

Kruskal-Wallis test A distribution-free method that is the analogue of the
analysis of variance of a one-way design. It tests whether the groups to
be compared have the same population median.

Kurtosis The extent to which the peak of a unimodal probability distribu-
tion or frequency distribution departs from the shape of a normal distri-
bution by either being more pointed (leptokurtic) or flatter (platykurtic).
For a normal distribution, the value of kurtosis is zero (mesokurtic).

Least significant difference test An approach to comparing a set of means
that controls the familywise error rate at some particular level, say α.
The hypothesis of the equality of the means is tested first by an α-level F
test. If this test is not significant, then the procedure terminates without
making detailed inferences on pairwise differences; otherwise, each
pairwise difference is tested by an α-level Student’s t test.

Least squares estimation A method used to estimate parameters, particu-
larly in regression analysis, by minimizing the difference between the
observed response and the value predicted by the model. Often referred
to as “ordinary least squares” to differentiate this simple version of the
technique from more involved versions, such as weighted least squares
and iteratively weighted least squares.

Likelihood distance test A procedure for the detection of outliers that uses
the difference between the log likelihood of the complete data set and
the log likelihood when a particular observation is removed. If the dif-
ference is large, then the observation involved is considered an outlier.

Likelihood function A function constructed from a statistical model and a
set of observed data that gives the probability of the observed data for
various values of the unknown model parameters. The parameter values
that maximize the probability are the maximum likelihood estimates of
the parameters.

Likelihood ratio The ratio of the likelihoods of the data under two hypoth-
eses, H0 and H1. May be used to assess H0 against H1.

Likert scales An ordinal scale of responses to a question or statement or-
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dered in a hierarchical sequence, such as from “strongly agree” through
“no opinion” to “strongly disagree.”

Linear function A function of a set of variables, parameters, etc., that does
not contain powers or cross-products quantities.

Linear model A statistical model in which the expected value of a parameter
for a given value of a factor, x, which is assumed to be equal to a + bx,
where a and b are constants.

Linear regression Regression analysis of data using linear models.
Linear trend A relationship between two variables in which the values of

one variable change at a constant rate as the value of the other variable
increases.

Linkage analysis A method used to test the hypothesis that a genetic marker
of known location is on a chromosome different from that on which a
gene postulated to govern susceptibility to a disease is located.

Lods A term often used in epidemiology for the logarithm of an odds ratio.
Also used in genetics for the logarithm of a likelihood ratio.

Logarithmic transformation The transformation of a variable, x, obtained
by taking y = log(x). Often used when the frequency distribution of the
variable, x, shows a moderate to large degree of skewness to achieve
normality.

Logistic regression A form of regression analysis used when the response
variable is a binary variable.

Logit The logarithm of the ratio of frequencies of two different categorical
outcomes, such as healthy versus sick.

Logit confidence limits The upper and lower ends of the confidence interval
for the logarithm of the odds ratio.

Log-linear model A statistical model that uses an analysis of variance type of
approach for the modeling of frequency counts in contingency tables.

Log-normal distribution The probability distribution of a variable, x, for
which log (x – a) has a normal distribution with mean m and variance
σ2.

Log-rank test A method for comparing the survival times of two or more
groups of subjects that involves the calculation of observed and expected
frequencies of failures in separate time intervals.

Loss function A concept used in decision analysis that assigns numerical
values to making good or poor decisions.

Low-dose extrapolation The process applied to the results from bioassays
for carcinogenicity conducted with animals at doses that are generally
well above human exposure levels to assess risk in humans.
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Main effect An estimate of the independent effect of (usually) a factor vari-
able on a response variable in an analysis of variance.

Mann-Whitney test A test that compares two groups of ordinal scores and
that shows the probability that they form parts of the same distribution.
It is a nonparametric equivalent of the t test.

Mantel-Haenszel estimate An estimate of the assumed common odds ratio
in a series of two-by-two contingency tables arising from different popu-
lations, e.g., occupation or country of origin.

Mantel-Haenszel test A calculated test statistic that uses a standard normal
deviate rather than a chi-square value. The test, used to control for con-
founding, examines the null hypothesis that the variables are indepen-
dent by looking at just one of the four cells.

Mantel’s trend test A regression test of the odds ratio against a numerical
variable representing ordered categories of exposure. It may be used to
analyze the results of a case-control study.

Markov process A stochastic process such that the conditional probability
distribution for the state at any future instant, given the present state, is
unaffected by any additional knowledge of the past history of the sys-
tem. See also random walk.

Masking Procedure intended to keep a participant(s) in a study from know-
ing some fact(s) or observation(s) that might bias or influence that
participant’s actions or decisions regarding the study. See also blinding.

Matching The process of making a study group and a comparison group
comparable with respect to extraneous factors. Often used when select-
ing cases and controls in retrospective studies to control variation in a
response variable due to sources other than those immediately under
investigation.

Maximum likelihood estimate (MLE) The value for an unknown param-
eter that maximizes the probability of obtaining exactly the data that
were observed.

Maximum tolerated dose The highest possible dose of a drug that can be
given with acceptable toxicity to the patient. This dose is usually deter-
mined in a phase I clinical trial and is the dose recommended for use in
future studies.

McNemar’s test A form of the chi-square test for matched-pairs data. It is a
special case of the Mantel-Haenszel test.

Mean squared error The expected value of the square of the difference be-
tween an estimator and the true value of a parameter. If the estimator is
unbiased, then the mean squared error is simply the variance of the
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estimator. For a biased estimator the mean squared error is equal to the
sum of the variance and the square of the bias.

Mean square ratio The ratio of two mean squares in analysis of variance.
Mean squares The name used in the context of analysis of variance for esti-

mators of particular variances of interest. For example, in the analysis of
a one-way design, the within-groups mean square estimates the assumed
common variance in k groups.

Measurement bias Systematic error arising from inaccurate measurements
(or classification) of a study variable(s) for subjects.

Measurement error Errors in reading, calculating, or recording a numerical
value. The difference between the observed values of a variable recorded
under similar conditions and some fixed true value.

Measurement scale The range of possible values for a measurement, e.g. the
set of possible responses to a question.

Measures of association Numerical indices quantifying the strength of the
statistical dependence of two or more qualitative variables.

Median A measure of central tendency. It is the value in a set of ranked
observations that divides the data into two parts of equal size. When
there is an odd number of observations, the median is the middle value.
When there is an even number of observations, the median is calculated
as the average of the two central values.

Meta-analysis The process of using statistical methods to combine the re-
sults of two or more independent studies to yield an overall answer to a
question of interest. The rationale behind this approach is to provide a
test with more power than that provided by the separate studies them-
selves.

Minimization A method for allocation of patients to treatments in clinical
trials that is usually an acceptable alternative to random allocation. The
procedure ensures balance between the groups to be compared on prog-
nostic variables, by allocating with a high degree of probability the next
patient to enter the trial to whatever treatment would minimize the over-
all imbalance between the groups on the prognostic variables, at that
stage of the trial.

Minimum chi-squared estimation A method of estimation that finds esti-
mates of the parameters of some model of interest by minimizing the
chi-squared statistic for the assessment of differences between the ob-
served values and those predicted by the model.

Missing values Observations missing from a set of data. These occur for a
variety of reasons, e.g., subjects drop out of the study, subjects do not
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appear for one or other of the scheduled visits, or there is an equipment
failure. Otherwise known as “missing completely at random.”

Mixed-effects model A model usually encountered in the analysis of longitu-
dinal data in which some of the parameters are considered to have fixed
effects and some are considered to have random effects. For example, in
a clinical trial with two treatment groups in which the response variable
is recorded for each subject at a number of visits, the treatments would
usually be regarded as having fixed effects and the subjects would usu-
ally be regarded as having random efffects.

Mode One of the measures of central tendency. It is the most frequently
occurring value in a set of observations.

Monte Carlo method Method for finding solutions to mathematical and sta-
tistical problems by simulation.

Multicenter study A clinical trial conducted simultaneously in a number of
participating hospitals or clinics, with all centers following a universal
study protocol and with independent random allocation within each
center.

Multicollinearity In multiple regression analysis, a situation in which at least
some of the independent variables are highly correlated directly or indi-
rectly with each other. Such a situation can result in inaccurate estimates
of the parameters in the regression model.

Multilevel analysis Method of analysis that explains individual outcomes in
terms of both individual and environmental or aggregate variables.

Multimodal distribution A probability distribution or frequency distribu-
tion with several modes. Multimodality is often taken as an indication
that the observed distribution results from the mixing of the distribu-
tions of relatively distinct groups of observations.

Multinomial distribution The probability distribution associated with the
classification of each of a sample of individuals into one of several mutu-
ally exclusive and exhaustive categories. When the number of categories
is two, the distribution is called binomial.

Multiple comparison tests Procedures for detailed simultaneous examina-
tion of the differences between a set of means, usually after a general
hypothesis that they are all equal has been rejected. Examples are
Bonferroni correction, Duncan’s multiple-range test, Dunnett’s test, and
Tukey’s method. No single technique is best in all situations, and a ma-
jor distinction between techniques is how they control the possible in-
flation of the Type I error.

Multiple correlation coefficient The correlation between the observed val-
ues of the dependent variable in a multiple regression and the values
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predicted by the estimated regression equation. Often used as an indica-
tor of how useful the explanatory variables are in predicting the re-
sponse.

Multiple end points A term used to describe the variety of outcome mea-
sures used in many clinical trials. There are a number of ways to mea-
sure treatment success, e.g, length of patient survival, percentage of pa-
tients experiencing tumor regression, or percentage of patients surviving
for 2 years. The aim in using a variety of such measures is to gain better
knowledge of the differences between the treatments being compared.

Multiple regression A statistical model in which a continuous response vari-
able, y, is regressed on a number of explanatory variables, X1, X2, . . .,
Xq. The model is

E y X Xq q( ) = + + +β β β0 1 1 . . .

where E denotes the expected value. The parameters in the model, the
regression coefficients β0, β1, βq, are generally estimated by least squares
estimation. Each coefficient gives the change in the response variable
corresponding to a unit change in the appropriate explanatory variable,
conditional on the other variables remaining constant.

Multiplication rule for probabilities For events A and B that are indepen-
dent, the probability that both occur is the product of the separate prob-
abilities, i.e., P(A and B) = P(A) P(B), where P denotes probability.

Multiplicative model A model in which the combined effect of a number of
factors, when applied together, is the product of their separate effects.

Multivariate analysis An analytical method that allows the simultaneous
study of two or more dependent variables.

Multivariate analysis of variance A procedure for testing the equality of the
mean vectors of more than two populations. The technique is analogous
to the analysis of variance of univariate data, except that the groups are
compared on q response variables simultaneously. In the univariate case,
F tests are used to assess the hypotheses of interest. In the multivariate
case, no single test statistic that is optimal in all situations can be con-
structed.

Multivariate data Data for which each observation consists of values for
more than one random variable, e.g., measurements of blood pressure,
temperature, and heart rate for a number of subjects.

Multivariate distribution The simultaneous probability distribution of a set
of random variables.

Multivariate probit analysis A method for assessing the effect of explana-
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tory variables on a set of two or more correlated binary response vari-
ables.

Negative predictive value The probability that a person having a negative
result or a diagnostic test does not have the disease.

Newman-Keuls test A multiple-comparison test used to investigate in more
detail the differences existing between a set of means, as indicated by a
significant F test in an analysis of variance.

n-of-1 clinical trial A variation of a randomized controlled trial in which a
sequence of alternative treatment regimens is randomly allocated to a
single patient. The outcomes of successive regimens are compared, with
the aim being determination of the optimum regimen for the patient.

Nominal variable A variable that gives the appropriate label of an observa-
tion after allocation to one of several possible categories, for example,
gender (male or female), marital status (married, single, or divorced), or
blood group (A, B, AB, or O).

Nomogram A line chart showing scales for the variables involved in a par-
ticular formula in such a way that corresponding values for each vari-
able lie on a straight line that intersects all the scales.

Nonrandomized clinical trial A trial in which a series of consecutive patients
receive a new treatment and those who respond (according to some
predefined criterion) continue to receive it. Patients who fail to respond
receive an alternative treatment. The two groups are then compared on
one or more outcome variables.

Nonresponse A term used for failure to provide the relevant information
being collected in a survey for a variety of reasons. A large number of
nonrespondents may introduce bias into the final results.

No-observed-effect level (NOEL) The dose level of a compound below
which there is no evidence of an effect on the response of interest.

Normal approximation to the binomial distribution A normal distribution
with mean np and variance np (1 – p) that acts as an approximation to a
binomial distribution as n, the number of trials, increases. The term p
represents the probability of a “success” of any trial.

Normal distribution A probability distribution of a random variable, x, that
is assumed by many statistical methods. The properties of a normal dis-
tribution are as follows: (1) it is a continuous, symmetrical distribution;
both tails extend to infinity; (2) the arithmetic mean, mode, and median
are identical; and (3) its shape is determined by the mean and standard
deviation. Synonym for Gaussian distribution.
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Null distribution The probability distribution of a test statistic when the
null hypothesis is true.

Null hypothesis The statistical hypothesis that one variable has no associa-
tion with another variable or set of variables or that two or more popu-
lation distributions do not differ from one another.

Number needed to treat In clinical treatment regimens, the number of pa-
tients with a specified condition who must follow the specified regimen
for a prescribed period to prevent the occurrence of a specified
complication(s) or an adverse outcome(s) of the condition.

O’Brien’s two-sample tests Tests that assess the differences between treat-
ment groups and that take account of the possible heterogeneous nature
of the response treatment. They may lead to the identification of sub-
groups of patients for whom the experimental therapy might have the
most or the least benefit.

Odds The ratio of the probability of the occurrence of an event to that of the
nonoccurrence of the event.

Odds ratio The ratio of the odds for a binary variable in two groups of
subjects. For example, if the two possible states of the variable are la-
beled “success” and “failure,” then the odds ratio is a measure of the
odds of a success in one group relative to that in the other.

One:m matching A form of matching often used when control subjects are
more readily obtained than cases. A number, m (m > 1), of controls are
attached to each case, with these being known as the matched set. The
theoretical efficiency of such matching in estimating, e.g., relative risk, is
m/(m+1), so one control per case is 50 percent efficient, whereas four
controls per case is 80 percent efficient. Increasing the number of con-
trols beyond 5 to 10 brings rapidly diminishing returns.

One-tailed test A statistical significance test based on the assumption that
the data have only one possible direction of variability. The choice be-
tween a one-sided test and a two-sided test must be made before any
test statistic is calculated.

One way design See analysis of variance.
Ordinal variable A measurement that allows a sample of individuals to be

ranked with respect to some characteristic but for which differences at
different points of the scale are not necessarily equivalent. For example,
anxiety might be rated on a scale of “none,” “mild,” “moderate,” and
“severe,” with the values 0, 1, 2, and 3 respectively, being used to label
the categories.

Outcomes All the possible results that may stem from exposure to a causal
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factor or from preventive or therapeutic interventions; all identified
changes in health status arising as a consequence of the handling of a
health problem.

Outliers Observations that differ so widely from the rest of the data as to
lead one to suspect that a gross error may have been committed in mea-
surement or recording.

Overmatching A situation that may arise when the matching procedure par-
tially or completely obscures evidence of a true causal association be-
tween the independent and dependent variables. The matching variable
may be an intermediate cause in the causal chain, or it may be strongly
affected by or a consequence of such an intermediate cause.

Paired availability design A design that can reduce selection bias in situa-
tions in which it is not possible to use random allocation of subjects to
treatments. In the experimental groups, the new treatment is made avail-
able to all subjects, although some may not receive it. In the control
groups, the experimental treatment is generally not available to sub-
jects, although some subjects may receive it in special circumstances.

Paired samples In a clinical trial, two samples of observations with the char-
acteristic feature that each observation in one sample has one and only
one matching observation in the other sample. One member of each
pair receives the experimental regimen, and the other member of each
pair receives a suitably designated control regimen.

Parallel groups design A simple experimental setup in which two different
groups of patients, e.g., treated and untreated patients, are studied con-
currently.

Parallelism in analysis of covariance One of the assumptions made in the
analysis of covariance, namely, that the slope of the regression line relat-
ing the response variable to the covariate is the same in all treatment
groups.

Parametric hypothesis A hypothesis concerning the parameter(s) of a distri-
bution, e.g., the hypothesis that the mean for a population equals the
mean for a second population when the populations are each assumed
to have a normal distribution.

Parametric methods Procedures for testing hypotheses about parameters in
a population described by a specified distributional form, often a nor-
mal distribution. Student’s t test is an example of such a method.

Partial correlation The correlation between a pair of variables after adjust-
ing for the effect of a third variable.

Partial multiple correlation coefficient An index for examining the linear
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relationship between a response variable and a group of explanatory
variables while controlling for another group of variables.

Path analysis A mode of analysis involving assumptions about the direction
of causal relationships between linked sequences and configurations of
variables. This allows the analyst to construct and test the appropriate-
ness of alternative models (in the form of a path diagram) of the causal
relations that may exist within the array of variables.

Pearson’s product moment correlation See correlation coefficient.
Person-time A measurement combining persons and time, used as denomi-

nator in person-time incidence and mortality rates. It is the sum of indi-
vidual units of time that the persons in the study population have been
exposed to the conditions of interest. The most frequently used person-
time is person-years.

Person-time incidence rate A measure of the incidence rate of an event, e.g.,
disease or death, in a population at risk, given by

number of events occurring during the interval
number of person - time units at risk observed during the interval

Person-years See person-time.
Placebo effect A phenomenon in which patients given only inert substances

often show subsequent clinical improvement compared with patients
who received the actual treatment.

Placebo reactor A term for those patients in a clinical trial who report side
effects normally associated with the active treatment while receiving a
placebo.

Play-the-winner rule A procedure in clinical trials in which the response to
treatment is either positive (a success) or negative (a failure). One of the
two treatments is selected at random and used on the first patient; there-
after, the same treatment is used on the next patient whenever the re-
sponse of the previously treated patient is positive and the other treat-
ment is used whenever the response is negative.

Point estimate See estimate.
Poisson distribution A distribution function used to describe the occur-

rence of rare events or to describe the sampling distribution of isolated
counts in a continuum of time or space. This distribution is used to
model person-time incidence rates.

Polynomial regression A linear model in which powers and possibly cross-
products of explanatory variables are included, e.g., y = β0 + β1x + β2x

2.
Positive predictive value The probability that a person having a positive

result on a diagnostic test actually has a particular disease.
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Power The probability of rejecting the null hypothesis when it is false. Power
gives a method of discriminating between competing tests of the same
hypothesis, with the test with the higher power being preferred. It is
also the basis of procedures for estimating the sample size needed to
detect an effect of a particular magnitude.

Precision A term applied to the likely spread of estimates of a parameter in a
statistical model. Measured by the standard error of the estimator, which
can be decreased, and hence precision is increased, by using a larger
sample size.

Predictor variables The variables that appear on the right side of the equa-
tion defining, e.g., multiple regression or logistic regression, and that
aim to predict or explain the response variable.

Prior distribution Probability distribution that summarizes information
about a random variable or parameter known or assumed at a given
time point before further information about empirical data is obtained.
It is used in the context of Bayesian inference.

Probability The quantitative expression of the chance that an event will oc-
cur. It can be defined in a variety of ways, of which the most common is

p A( ) = number of times  occurs
number of times  could occur

A
A

Probability distribution For a discrete random variable, a mathematical for-
mula that gives the probability of each value of the variable. Examples
are binomial distribution and Poisson distribution. For a continuous
random variable, a curve described by a mathematical formula that
specifies, by way of areas under the curve, the probability that the vari-
able falls within a particular interval. Examples are normal distribution
and exponential distribution.

Probability sample A sample obtained by a method in which every indi-
vidual in a finite population has a known, but not necessarily equal,
chance of being included in the sample.

Probability (p) value The probability of the observed data (or data showing
a more extreme departure from the null hypothesis) when the null hy-
pothesis is true.

Probit analysis A technique most commonly used in bioassays, particularly
toxilogical experiments in which sets of animals are subject to known
levels of a toxin, and a model is required to relate the proportions sur-
viving at a particular dose to the dose. In this type of analysis the probit
transformation of a proportion is modeled as a linear function of the
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dose or, more commonly, the logarithm of the dose. Estimates of the
parameters in the models are found by maximum likelihood estimation.

Probit transformation A transformation used in the analysis of dose-re-
sponse curve.

Proportional hazards model See Cox’s proportional hazards model.
Proportional odds model A model for investigating the dependence of an

ordinal variable on a set of explanatory variables. In the most commonly
used version of the model, the cumulative probabilities, P (y ≤ k), where
y is the response variable with categories 1 ≤ 2 ≤ 3… ≤ c, are modeled as
linear functions of the explanatory variables via the logistic transforma-
tion. The name proportional odds arises since the odds ratio of having a
score of k or less for two different sets of values of the explanatory
variables does not depend on k.

Protective efficacy (PE) of a vaccine The proportion of cases of disease
prevented by the vaccine, usually estimated as PE = (ARU – ARV)/
ARU, where ARV and ARU are the attack rates of the disease under
study among the vaccinated and unvaccinated cohorts, respectively. For
example, if the rate of disease is 100 per 10,000 in an unvaccinated group
but only 30 per 10,000 in a comparable vaccinated group, the PE is 70
percent.

Protocol A formal document outlining the proposed procedures for carry-
ing out a clinical trial. The main features of the document are study
objectives, patient selection criteria, treatment schedules, methods of
patient evaluation, trial design, procedures for dealing with protocol
violations, and plans for statistical analysis.

Protocol violations Deliberate or accidental failure of patients to follow one
or other aspects of a protocol for a clinical trial. For example, the pa-
tients may not have taken their prescribed medication. Such patients are
said to show noncompliance.

Quadrant sampling A sampling procedure used with spatial data in which
sample areas (the quadrants) are taken and the number of objects or
events of interest occurring in each is recorded.

Quantile-quantile (Q-Q) plot An informal method for assessing assump-
tions when fitting statistical models or using significance tests. For ex-
ample, in investigating the assumption that a set of data is from a normal
distribution, the ordered sample values, X(1), X(2),. . . X(n) are plotted
against the values
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Quantiles Divisions of a probability distribution or frequency distribution
into equal, ordered subgroups, e.g., quartiles or percentiles.

Quantit model A three-parameter nonlinear logistic regression model.
Quartiles The values that divide a frequency distribution or probability dis-

tribution into four equal parts.
Quasilikelihood A function that is used as the basis for the estimation of

parameters when it is not possible (or desirable) to make a particular
distributional assumption about the observations, with the consequence
that it is not possible to write down their likelihood. The function de-
pends on the assumed relationship between the mean and the variance
of the observations.

Quintiles The set of four variate values that divide a frequency distribution
or a probability distribution into five equal parts.

Quota sample A sample in which the units are not selected completely at
random, but are selected in terms of a certain number of units in each of
a number of categories, e.g., 10 men over age 40 or 25 women between
ages 30 and 35.

Radial plot of odds ratios A diagram used to display the odds ratios calcu-
lated from a number of different clinical trials of the same treatment(s).
The diagram consists of a plot of y = ∆̂ /SE ( ∆̂ ) against x = 1/ SE ( ∆̂ ),
where ∆̂  is the logarithm of the odds ratio from a particular study and
SE is standard error. Often useful in meta-analysis.

Random allocation, randomization Allocation of individuals to groups, e.g.,
for experimental and control regimens, by chance. It follows a predeter-
mined plan that is usually devised with the aid of a table of random
numbers. The control and experimental groups should be similar at the
start of the investigation, and the investigator’s personal judgment and
prejudices should not influence allocation.

Random effects The effects attributable to an infinite set of levels of a factor,
only a randomsample of which occurs in the data.

Randomization tests Procedures for determining statistical significance di-
rectly from data, without recourse to some particular sampling distribu-
tion. The data are divided repeatedly between treatments, and for each
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division the relevant test statistic e.g., t or F is calculated to determine
the proportion of the data permutations that provide as large a test sta-
tistic as that associated with the observed data. If that proportion is
smaller than some significance level ?, the results are significant at the ?
level.

Randomized clinical trial (RCT) A clinical trial that involves the formation
of treatment groups by the process of random allocation.

Randomized consent design A design originally introduced to overcome
some of the perceived ethical problems facing clinicians entering pa-
tients in randomized clinical trials. After the patient’s eligibility is estab-
lished, the patient is randomized to one of two treatments, treatments A
and B. The risks, benefits, and treatment options are discussed with
patients randomized to receive treatment A, and the patients are asked
if they are willing to receive the therapy. Those who do not agree receive
treatment B or some alternative treatment. The same procedure is fol-
lowed for patients who were randomized to receive treatment B.

Random sample Either a set of n independent and identically distributed
random variables or a sample of n individuals selected from a popula-
tion in such a way that each sample of the same size is equally likely.

Random variable A variable, the values of which occur according to some
specified probability distribution.

Random variation The variation in a data set unexplained by identifiable
sources.

Random walk The path traversed by a particle that moves in steps, with
each step being determined by chance in regard to direction or magni-
tude, or both. Random walk may be applied to sequential sampling.

Range The difference between the largest and the smallest observations in a
data set.

Range of equivalence The range of differences between two treatments be-
ing compared in a clinical trial within which it is not possible to make a
definite choice of treatment.

Rank correlation coefficients Correlation coefficients that depend only on
the ranks of the variables, not on their observed values. Examples are
Kendall’s tau statistics and Spearman’s rho correlation coefficient.

Rank order statistics Statistics based only on the rank of the sample obser-
vations, e.g., Kendall’s tau statistics.

Rate A measure of the frequency of occurrence of a phenomenon, given by

Rate
mumber of events in specified period
average population during the period

= ×10n
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Ratio The value obtained by dividing one quantity by another: a general
term of which rate, proportion, percentage, etc., are subsets. It is an
expression of the relationship between a numerator and a denominator
in which the two are usually separate and distinct quantities, with nei-
ther being included in the other.

Receiver operating characteristic (ROC) curve A plot of the sensitivity (y
axis) of a diagnostic test against the complement of its specificity (x axis)
that ascertains the balance between specificity and sensitivity corre-
sponding to various cutoffs.

Regression analysis A general term for methods of analysis that are con-
cerned with estimating the parameters in some postulated relationship
between a response variable and one or more explanatory variables.
Examples are linear regression, logistic regression, and multiple regres-
sion.

Regression coefficient, regression weight See multiple regression.
Regression diagnostics Procedures designed to investigate the assumptions

underlying a regression analysis (e.g., normality or homogeneity of vari-
ance) or to examine the influence of particular datum points or small
groups of datum points on the estimated regression coefficients.

Regression line Diagrammatic presentation of a regression equation, usu-
ally drawn with the independent variable, x, as the abscissa and the
dependent variable, y, as ordinate.

Relative risk A measure of the association between exposure to a particular
factor and risk of a certain outcome, calculated as

Relative risk
incidence rate among exposed

incidence rate among nonexposed
=

Relative survival The ratio of the observed survival for a given group of
patients to the survival that group would have experienced on the basis
of the life table for the population for which the diagnosis was made.

Reliability The degree to which the results obtained by a measurement pro-
cedure can be replicated.

Reproducibility The closeness of results obtained on the same test material
under changes of reagents, conditions, techniques, apparatus, laborato-
ries, and so on.

Residual The difference between the observed value of a response variable
(yi) and the value predicted by some model of interest (yi). Examination
of a set of residuals, usually by informal graphical techniques, allows the
assumptions made in the model-fitting exercise (e.g., normality and ho-
mogeneity of variance) to be checked.



164 APPENDIX B

Residual confounding Potential confounding by factors or variables not yet
considered in the analysis, which may be directly observable or not.

Residual sum of squares See analysis of variance.
Response bias The systematic component of the difference between infor-

mation provided by survey respondent and the “truth.”
Response rate The number of completed or returned survey instruments

(questionnaires, interviews, etc.) divided by the total number of persons
who would have been surveyed.

Response variable The variable of primary importance in medical investiga-
tions, since the major objective is usually to study the effects of a treat-
ment or other explanatory variables on this variable.

Restricted maximum likelihood estimation (REML) A method of estima-
tion in which estimators of parameters are derived by maximizing the
restricted likelihood rather than the likelihood itself.

Resubstitution error rate The estimate of the proportion of subjects
misclassified by a rule derived from a discriminant analysis, obtained by
reclassifying the training set by using the rule.

Ridge regression A method of regression analysis designed to overcome the
possible problem of multicollinearity among the explanatory variables.
Such multicollinearity makes it difficult to estimate the separate effects
of variables on the response. This form of regression may result in in-
creased precision.

Ridit analysis A method of analysis for ordinal variables that proceeds from
the assumption that the ordered categorical scale is an approximation to
an underlying, but not directly measurable, continuous variable. Nu-
merical values called ridits are calculated for each category. These values
are estimates of the probability that a subject’s value on the underlying
variable is less than or equal to the midpoint of the corresponding inter-
val.

Risk assessment The qualitative or quantitative estimation of the likelihood
of adverse effects that may result from exposure to specified health haz-
ards or from the absence of beneficial influences.

Robust estimation Methods of estimation that work well not only under
ideal conditions but also under conditions representing a departure from
an assumed distribution or model.

Robust regression A general class of statistical procedures designed to re-
duce the sensitivity of the parameter estimates to failures in the assump-
tion of the model. For example, least squares estimation is known to be
sensitive to outliers, but the impact of such observations can be reduced
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by basing the estimation process not on a sum-of-squares criterion but
on a sum-of-absolute values criterion.

Robust statistics Statistical procedures and tests that work well even when
the assumptions on which they are based are moderately violated. An
example is Student’s t test.

Rule of three A method based on the Poisson distribution which states that
if in n trials zero events of interest are observed, a 95 percent confidence
(with limits of 0 and 3) bound on the underlying rate is 3/n.

Run-in A period of observation before the formation of treatment groups by
random allocation, during which subjects acquire experience with the
major components of a study protocol. Those subjects who experience
difficulty complying with the protocol are excluded, whereas the group
of proven compliers is randomized into the trial.

Runs In a series of observations, the occurrence of an uninterrupted se-
quence of the same value. For example, in the series 1111222433333
there are four “runs”, with the single value, 4, being regarded as a run of
length unity.

Runs test A test frequently used to detect serial correlations. The test con-
sists of counting the number of runs or sequences of positive and nega-
tive residuals and comparing the result with the expected value under
the null hypothesis of independence.

Sample size determination The process of deciding, before a study begins,
how many subjects should be studied. It takes into account the inci-
dence or prevalence of the condition being studied, the estimated or
putative relationship among the variables in the study, the power that is
desired, and the allowable Type I error.

Sampling distribution The probability distribution of a statistic. For ex-
ample, the sampling distribution of the arithmetic mean of samples of
size n, taken from a normal distribution with mean ? and standard de-
viation σ, is a normal distribution also with mean ? but with standard
deviation σ / n .

Sampling error The difference between the sample result and the popula-
tion characteristic being estimated. In practice, the sampling error can
rarely be determined because the population characteristic is not usu-
ally known. With appropriate sampling procedures, it can be kept small
and the investigator can determine its probable limits of magnitude.

Sampling variation The variation shown by different samples of the same
size from the same population.
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Sampling zeros Zero frequencies that occur in the cells of contingency tables
because of inadequate sample size.

Saturated model A model that contains all main effects and all possible in-
teractions between factors. Such a model contains the same number of
parameters as observations and results in a perfect fit for a data set.

Scatter diagram, scattergram, scatterplot A graphic method of displaying
the distribution of two variables in relation to each other.

Selection bias The bias that may be introduced into clinical trials and other
types of medical investigations whenever a treatment is chosen by the
individual involved or is subject to constraints that go unobserved by
the researcher.

Semi-interquartile range Half the difference between the upper and lower
quartiles.

Sensitivity An index of the performance of a diagnostic test, calculated as
the percentage of individuals with a disease who are correctly classified
as having the disease, i.e., the conditional probability of having a posi-
tive test result given that the disease is present.

Sensitization Administration of antigen to induce a primary immune re-
sponse.

Sequential analysis A method of analysis in which a statistical test of signifi-
cance is conducted repeatedly over time as the data are collected. After
each observation, the cumulative data are analyzed and one of the fol-
lowing three decisions is taken:

• stop the data collection, reject the null hypothesis, and claim sta-
tistical significance;

• stop the data collection, do not reject the null hypothesis, and state
that the results are not statistically significant;

• continue the data collection since the accumulated data are inad-
equate to draw a conclusion.
Three types of sequential analysis are:

• open-ended sequential analysis, used in studies that continue in-
definitely until sufficient evidence to reject or fail to reject the null hy-
pothesis has accumulated;

• closed-ended sequential analysis, in which the maximum size of
the sample has been set and as data are accumulated and analyzed there
is an option to terminate the study before data from the planned sample
size have accumulated; and

• group sequential analysis, in which interim analysis is undertaken
at planned numbers of intervals, with each interval having accumulated
data for a specified number of samples.
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Sequential sums of squares A term in regression analysis that refers to the
contribution of variables as they are added to the model in a particular
sequence. It is the difference in the residual sum of squares before and
after adding a variable.

Sickle cell anemia A hereditary, genetically determined hemolytic anemia,
one of the hemoglobinopathies, occurring almost exclusively in African
Americans, characterized by arthralgia, acute attacks of abdominal pain,
ulcerations of the lower extremities, and sickle-shaped erythrocytes in
the blood.

Significance level The level of probability at which it is agreed that the null
hypothesis will be rejected, conventionally set at 0.05.

Significance test A statistical procedure that, when applied to a set of obser-
vations, results in a p value relative to some hypothesis. Examples in-
clude Student’s t test, z test, and Wilcoxon’s signed rank test.

Sign test A test that can be used when combining results of several studies,
e.g., in meta-analysis. The test considers the direction of results of indi-
vidual studies, whether the associations demonstrated are positive or
negative.

Similarity coefficient Coefficients that range from zero to unity and that are
used to measure the similarity of the variable values of two observations
from a set of multivariate data. Most commonly used on binary vari-
ables.

Simpson’s paradox A form of confounding in which the presence of a con-
founding variable changes the direction of an association. It may occur
in meta-analysis because the sum of the data or results from a number of
different studies may be affected by confounding variables that have
been excluded by design features from some studies but not others.

Singly censored data Censored observations that occur in clinical trials in
which all the patients enter the study at the same time point and in
which the study is terminated after a fixed time period.

Skewness The lack of symmetry in a probability distribution.
Spatial data A collection of measurements or observations on one or more

variables taken at specified locations and for which the spatial organiza-
tion of the data is of primary interest.

Specificity An index of the performance of a diagnostic test, calculated as
the percentage of individuals without the disease who are classified as
not having the disease, i.e., the conditional probability of a negative test
result given that the disease is absent.

Square root transformation A transformation of the form y x= , often
used to make random variables suspected to have a Poisson distribution
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more suitable for techniques such as analysis of variance by making their
variances independent of their means.

Standard deviation (SD) The most commonly used measure of the spread
of a set of observations. Equal to the square root of the variance.

Standard error (SE) The standard deviation of the sampling distribution of
a statistic. For example, the standard error of the sample mean of n
observations is σ / n , where σ2 is the variance of the original observa-
tions.

Standardization A set of techniques used to remove as much as possible the
effects of differences in age or other confounding variables when com-
paring two or more populations. The common method uses weighted
averaging of rates specific for age, sex, or some potential confounding
variable(s) according to some specified distribution of these variables.

Standard normal distribution A normal distribution with zero mean and
unit variance.

Standard normal variable A random variable having a standard normal dis-
tribution.

Standard scores Variable values transformed to zero mean and unit vari-
ance.

Statistic A numerical characteristic of a sample, e.g., sample mean and
sample variance.

Statistical significance An estimate of the probability of the observed or
greater degree of association between independent and dependent vari-
ables under the null hypothesis. The level of statistical significance is
usually stated by the p value.

Statistical test A procedure that is intended to decide whether a hypothesis
about the distribution of one or more populations or variables should
be rejected or accepted.

Stem-and-leaf plot A method of displaying data resembling a histogram in
which each observation is split into two parts, with multiples of 10 along
the “stem” and the integers forming the “leaves.” The stems are arranged
in a column, and the leaves are attached to the relevant stem.

Stochastic process A process that incorporates some element of random-
ness, in a series of random variables, xt, where t assumes values in a
certain range T. In most cases xt is an observation at time t and T is a
time range.

Stopping rules Procedures that allow interim or sequential analyses in clini-
cal trials at predefined times and that specify the conditions or criteria
under which the trial shall be terminated while preserving the Type I
error at some prespecified level.
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Stratified logrank test A method for comparing the survival experiences of
two groups of subjects given different treatments when the groups are
stratified by age or some other prognostic variable.

Stratified randomization A randomization procedure in clinical trials in
which strata are identified and subjects are randomly allocated to treat-
ments within each stratum without sacrificing the advantages of random
allocation.

Structural zeros Zero frequencies occurring in the cells of contingency tables
that arise because it is theoretically impossible for an observation to fall
in the cell.

Student’s t distribution The probability distribution of the ratio of a stan-
dard normal variable to the square root of a variable with a chi-square
distribution. The shape of the distribution varies with n, and as n gets
larger the shape of the t distribution approaches that of the standard
normal distribution.

Student’s t tests Significance tests for assessing hypotheses about population
means. One version, known as single-sample t test, is used in situations
in which it is required to test whether the mean for a population takes a
particular value. Another version, known as independent-samples t test,
is applied when independent samples are available from each popula-
tion and is designed to test the equality of the means for the two popula-
tions.

Subgroup analysis The analysis of particular subgroups of patients in a clini-
cal trial to assess possible treatment-subgroup interactions. Analysis of
many subgroups for treatment effects can increase overall Type I error
rates.

Subjective end points End points in clinical trials that can be measured only
by subjective clinical rating scales.

Surrogate end point In clinical trials it refers to an outcome measure that an
investigator considers to be highly correlated with an endpoint of inter-
est but that can be measured at lower expense or at an earlier time. In
some cases, ethical issues may suggest the use of a surrogate endpoint.

Survival function The probability that the survival time of an individual is
longer than some particular value. A plot of this probability against time
is called a survival curve and is a useful component in the analysis of
such data.

Symmetrical distribution A probability distribution or frequency distribu-
tion that is symmetrical about some central value.

Systematic allocation Procedures for allocating treatments to patients in a
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clinical trial that attempts to emulate random allocation by using some
systematic scheme, such as giving treatment A to those people with birth
dates on even dates and treatment B to those with birth dates on odd
days.

Systematic error A term often used in a clinical laboratory to describe the
difference in results caused by a bias of an assay.

Target population The collection of individuals, items, measurements, etc.,
about which it is required to make inferences. At times it is used to
indicate the population from which a sample is drawn, and at times it is
used to denote any reference population about which inferences are
required.

t distribution The distribution of a quotient of independent random vari-
ables, the numerator of which is a standardized normal variate and the
denominator of which is the positive square root of the quotient of a
chi-square-distributed variate and its number of degrees of freedom.

Test statistic A statistic used to assess a particular hypothesis in relation to
some population. The essential requirement of such a statistic is a known
distribution when the null hypothesis is true.

Tied observations A term usually applied to ordinal variables to indicate
observations that take the same value on a variable.

Time-dependent covariates Covariates whose values change over time. Ex-
amples are age and weight.

Time-independent covariates Covariates whose values remain constant over
time. An example is a pretreatment measurement of some characteris-
tic.

Tmax A measure traditionally used to compare treatments in bioequivalence
trials. It is the time at which a patient’s highest recorded values occur.

Total sum of squares The sum of the squared deviations of all the observa-
tions from their mean.

Trapezium rule A simple rule for approximating the integral of a function,
f(x), between two limits.

Treatment allocation ratio The ratio of the number of subjects allocated to
the two treatments in a clinical trail. Equal allocation is most common in
practice, but it may be advisable to allocate patients randomly in other
ratios when a new treatment is compared with an old one, or when one
treatment is much more difficult or expensive to administer.

Treatment cross contamination An instance in which a patient assigned to
receive a particular treatment in a clinical trial is exposed to one of the
other treatments during the course of the trial.
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Treatment received analysis Analyzing the results of a clinical trial by the
treatment received by a patient rather than by the treatment allocated at
randomization as in intent-to-treat analysis.

Treatment trial Synonym for clinical trial.
Trend Movement in one direction of the values of a variable over a period of

time.
Triple blind A study in which the subjects, observers, and analysts are

blinded as to which subjects received what interventions.
Truncated data Data for which sample values larger (truncated on the right)

or smaller (truncated on the left) than a fixed value are either not re-
corded or not observed.

t test Test that uses a statistic that, under the null hypothesis, has the t
distribution to test whether two means differ significantly or to test lin-
ear regression or correlation coefficients.

Tumorigenic dose 50 (TD50) The daily dose of a compound required to
halve the probability of remaining tumorless at the end of a standard-
ized lifetime.

Two-armed bandit allocation An allocation procedure for forming treatment
groups in a clinical trial in which the probability of assigning a patient to
a particular treatment is a function of the observed differences in out-
comes for patients already enrolled in the trial.

Two-by-two contingency table A contingency table with two rows and two
columns formed from cross classification of two binary variables.

Two-phase sampling A sampling scheme involving two distinct phases: first,
information about particular variables of interest is collected for all
members of the sample, and second, information about other variables
is collected for a subsample of the individuals in the original sample.

Two-stage sampling A procedure most often used in the assessment of qual-
ity assurance before, during, and after the manufacture of, e.g., a drug
product. This would involve randomly sampling a number of packages
of some drug and then sampling a number of tablets from each of these
packages.

Two-stage stopping rule A procedure sometimes used in clinical trials in
which results are first examined after only a fraction of the planned
number of subjects in each group have completed the trial. The relevant
test statistic is calculated and the trial is stopped if the difference be-
tween the treatments is significant at stage 1 level . Otherwise, addi-
tional subjects in each treatment group are recruited, the test statistic is
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calculated again, and the groups are compared at stage 2 level α2, where
α and α2 are chosen to give an overall significance level of α.

Two-tailed test A statistical significance test based on the assumption that
the data are distributed in both directions from some central value(s).

Type I error The error that results when the null hypothesis is falsely re-
jected.

Type II error The error that results when the null hypothesis is falsely ac-
cepted.

Unanimity rule A requirement that all of a number of diagnostic tests yield
positive results before declaring that a patient has a particular complaint.

Unbiased estimator An estimator that for all sample sizes has an expected
value equal to the parameter being estimated. If an estimator tends to be
unbiased as the sample size increases, it is referred to as “asymptotically
unbiased.”

Uniform distribution The probability distribution of a random variable hav-
ing constant probability over an interval. The most commonly encoun-
tered uniform distribution is one in which the parameters α and β take
the values 0 and 1, respectively.

Unimodal distribution A probability distribution or frequency distribution
having only a single mode.

Unit normal variable Synonym for standard normal variable.
Univariate data Data involving a single measurement for each subject or

patient.
Unweighted means analysis An approach to the analysis of two-way and

higher-order factorial designs when there are an unequal number of ob-
servations in each cell. The analysis is based on cell means, using the
harmonic mean of all cell frequencies as the sample size for all cells.

U-shaped distribution A probability distribution or frequency distribution
shaped more or less like a letter U, although not necessarily symmetri-
cal. The distribution has its greatest frequencies at the two extremes of
the range of the variable.

Utility In economics, utility means preference for or desirability of a particu-
lar outcome.

Utility analysis A method in clinical decision analysis in which the outcome
refers to being or becoming healthy rather than sick or disabled.

Vague prior A term used for the prior distribution in Bayesian inference in
the situation in which there is complete ignorance about the value of a
parameter.
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Validity The extent to which a measuring instrument is measuring what was
intended.

Validity checks A part of data editing in which one checks that only allow-
able values or codes are given for the answers to questions asked of
subjects.

Validity, measurement An expression of the degree to which a measurement
measures what it intends to measure.

Validity, study The degree to which the inference drawn from a study, espe-
cially generalizations extending beyond the study sample, are warranted
after taking into account the study methods, the representativeness of
the study sample, and the nature of the population from which it is
drawn.

Variable Any attribute, phenomenon, or event that can have different values
from time to time.

Variable, antecedent A variable that causally precedes the association of the
outcome under study.

Variable, confounding See confounding.
Variable, control Independent variable other than the “hypothetical causal

variable” that has a potential effect on the dependent variable and that
is subject to control by analysis.

Variable, uncontrolled A (potentially) confounding variable that has not
been brought under control by design or analysis.

Variance A measure of the variation shown by a set of observations, defined
by the sum of squares of the deviation from the mean divided by the
number of degrees of freedom in the set of observations. In a popula-
tion, the second moment about the mean.

Variance components Variances of random-effect terms in linear models.
For example, in a simple mixed model for longitudinal data, both sub-
ject effects and error terms are random, and estimation of their vari-
ances is of some importance. In the case of a balanced design, estima-
tion of these variances is usually achieved directly from the appropriate
analysis of variance table by equating mean squares to their expected
values. When the data are unbalanced, a variety of estimation methods
might be used, although maximum likelihood estimation and restricted
maximum likelihood estimation are most often used.

Variance-covariance matrix A symmetric matrix in which the off-diagonal
elements are the covariances (sample or population) of pairs of variables
and the elements on the main diagonal are the variances (sample or
population) of the variables.

Variance inflation factor An indicator of the effect that the other explana-
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tory variables have on the variance of a regression coefficient of a par-
ticular variable, given by the reciprocal of the square of the multiple
correlation coefficient of the variable with the remaining variables.

Variance ratio distribution Synonym for F distribution.
Variance ratio test Synonym for F test.
Variance-stabilizing transformations Transformation designed so that the

variance of the transformed variable is independent of parameters.
Vector A matrix having only one row or column.
Venn diagram A graphical representation of the extent to which two or more

quantities or concepts are mutually inclusive and mutually exclusive.
Virtually safe dose The exposure level to some toxic agent corresponding to

an acceptably small risk of suffering an ill effect. From a regulatory per-
spective, this typically means an increased risk of no more than 10 6 or
10 4 above the background.

Volunteer bias A possible source of bias in clinical trials involving volun-
teers, but not involving random allocation, because of the known pro-
pensity of volunteers to respond better to treatment than other patients.

Wald’s test A test for the hypothesis that a vector of parameters, θ′ = [θ1, θ2,
. . . , θm], is the null vector. The test statistic is,

W V= ′ −ˆ ˆθ θ1

where ˆ ′θ  contains the estimated parameter values and V is the asymp-
totic variance-covariance matrix of θ̂ . Under the hypothesis, W has an
asymptotic chi-square distribution with degrees of freedom equal to the
number of parameters.

Weibull model Dose-response model of the form P(d) = 1 – exp( – bdm),
where P(d) is the probability of response due to a continuous dose rate
d; and b and m are constants. The model is useful for extrapolating from
high- to low-dose exposures, e.g., from animals to human.

Weighted average A value determined by assigning weights to individual
measurements. Each value is assigned a nonnegative coefficient (weight);
the sum of the products of each value by its weight divided by the sum
of the weights is the weighted average.

Weighted kappa A version of the kappa coefficient that allows disagree-
ments between raters to be differentially weighted to allow differences
in how serious such disagreements are judged to be.

Weighted least squares A method of estimation in which estimates arise
from minimizing a weighted sum of squares of the differences between
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the response variable and its predicted value in terms of the model of
interest. Often used when the variance of the response variable is
thought to change over the range of values of the explanatory variable(s),
in which case the weights are generally taken as the reciprocals of the
variance.

Weight variation tests Tests designed to ensure that manufacturers control
the variation in the weights of the tablet forms of the drugs that they
produce.

Wilcoxon’s rank sum test Another name for the Mann-Whitney test.
Wilcoxon’s signed rank test A distribution-free method for testing the dif-

ference between two populations by using matched samples. The test is
based on the absolute differences of the pairs of observations in the two
samples ranked according to size, with each rank being given the sign of
the original difference.

Wilk’s multivariate outlier test A test for detecting outliers in multivariate
data that assumes that the data arise from a multivariate normal distri-
bution.

William’s test A test used to answer questions about the toxicities of sub-
stances and at what dose level any toxicity occurs. The test assumes that
the mean response of the variate is a monotonic function of dose.

Yates’ correction An adjustment proposed by Yates in the chi-square calcu-
lation for a two-by-two contingency table that subtracts 0.5 from the
positive discrepancies (observed – expected) and adding 0.5 to the nega-
tive discrepancies before these values are squared in the calculation of
the usual chi-square statistic. This brings the distribution based on the
discontinuous frequencies closer to the continuous chi-square distribu-
tion from which the published tables for testing chi-square values are
derived.

Zelen’s single-consent design A modified double-blind randomized con-
trolled trial design for the formation of treatment groups in a clinical
trial. The essential feature is randomization before informed consent
procedures, which is claimed to be needed only for the group allocated
to receive the experimental regimen.

z test A test for assessing hypotheses about population means when their
variances are known. If the null hypothesis is true, z has a standard
normal distribution.
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Appendix C
Selected Bibliography on Small

Clinical Trials

This bibliography is a selection of published references dealing with
analytical approaches and statistical methods applicable to clinical trials, par-
ticularly small clinical trials. The citations span the field broadly and are the
result of searches of the Medline database and suggestions from the commit-
tee and from the experts in the field who made presentations at the
committee’s invitational workshop. The references are organized into spe-
cific categories to aid the reader. Although comprehensive, the list is selec-
tive, and the committee believes that it is an up-to-date bibliography that
will assist researchers in learning more about design and analytical methods
applicable to small clinical trials.
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