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Several authors have suggested the use of multilevel models for the analysis of data from single
case designs. Multilevel models are a logical approach to analyzing such data, and deal well with
the possible different time points and treatment phases for different subjects. However, they are
limited in several ways that are addressed by Bayesian methods. For small samples Bayesian
methods fully take into account uncertainty in random effects when estimating fixed effects; the
computationalmethods now in use can fit complexmodels that represent accurately the behavior
beingmodeled; groups of parameters can bemore accurately estimatedwith shrinkagemethods;
prior information can be included; and interpretation is more straightforward. The computer
programs for Bayesian analysis allowmany (nonstandard) nonlinearmodels to be fit; an example
using floor and ceiling effects is discussed here.
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1. Introduction

Researchers recognize that data from a single case design (SCD) are structured so that multilevel modeling: (see, e.g.,
Raudenbush & Bryk, 2002) is the natural way to analyze the observations nested within individuals (presuming there are three or
more cases, as is typical). Although multilevel modeling provides the basic structure, simple linear models are not always
adequate, nor are typical estimation methods as useful as Bayesian methods.

Many SCD studies require nonlinear models either because of the nature of the dependent variable (e.g., counts) or because there
is a gradual change in behavior from one phase to another that requires a nonlinear curve. In the first case, the extension to nested
data of generalized linearmodels (GLMs) instead of linearmodels handles the usual data types, such as counts out of a total (requiring
a binomial ormore complex distribution) or counts for a fixed time (requiring a Poisson ormore complicated distribution). In the case
of continuous variables that require a nonlinear curve, or additional complications in generalized linear models such as floor and
ceiling effects, nonlinear models are needed that are not standard in form nor implemented in standard computer software.

Because most SCDs consist of only a few cases (typically three to nine), the methods developed for large samples may be
inappropriate. Bayesian inference and computations offer advantages in this case. One is that they are exact for small samples; they do
not require large numbers of cases. Another is that they implement shrinkage estimators that allow better estimation for each case
while making use of information from the other cases. Bayesian statistics also de-emphasize null hypothesis tests and allow more
natural probability statements than classical statistical methods (while still allowing more traditional interpretations, as will be
illustrated in this article).

This article will explain these issues in more detail and will illustrate the use of nonlinear Bayesian estimation in two case
studies, one of each type (GLM and intrinsically nonlinear model). To provide the background for discussing these examples, the
next sections discuss multilevel models for SCDs, present an overview of Bayesian inference, and offer basic information about
nonlinear models (including generalized linear models.)
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2. Multilevel models for SCDs

In a typical SCD, each case has a number of observations in a time series, and the cases go through a number of different
phases, typically lasting for 3 to 10 sessions (periods of observation). The number of phases may be as small as 2 (for an AB design,
or for multiple baseline designs) or as many as 6 to 10 or more for more complex designs. Different cases may have the same
structure of phases, or different phase structures; further they may have different numbers of observations in different phases.
Some cases may also have missed certain periods of observation due to illness or other problems, causing missing data in the
planned pattern of data collection. All of these complications can make the modeling situation difficult.

The multilevel approach tries to model the behavior (the dependent variable) of each case as a function of the phase and possibly
the time of measurement. The behavior of each case is then analyzed to see how much variation there is across cases, and if there is
much variationwhether it can be accounted for in terms of the cases' characteristics. This viewpoint generates two types of equations,
one for the individual case's behavior, the other summarizing and accounting for variability across cases.

We start with the simplest possible design, a multiple baseline design. In this design everyone goes through two phases, a
baseline phase (A) and a treatment phase (B). The treatment phase starts at a different time for each person, so that history is
eliminated as a threat to internal validity. When the first person goes from phase A to phase B, we should see a change in only that
person's behavior and not the behavior of other persons. Similarly, when each successive person changes from phase A to B, no
change should occur in the behavior of other persons. A complete statistical model for this design would test all phase changes,
but for expository purposes, I will use a simpler model that only tests for changes in phase for each person.

Suppose that the dependent variable is continuous and normally distributed and that there is no time trend in either phase.
Therefore, except for residual variation, the behavior is flat during baseline and immediately changes to a different (constant)
level during the treatment phase. For each case i and time t, the model for observations for that case is
yit ¼ β0i þ β1iPhaseit þ rit ð1:1Þ

yit is the dependent variable for case i at time t, β0i is the level at baseline for case i, β1i is the change between baseline and
where
treatment phase for case i, Phaseit is an indicator (dummy) variable that is 0 during phase A and 1 during phase B, and rit is a
residual. The variance of rit is σ2. Notice that each case can have a different baseline and a different amount of change and that the
interpretation of β0i and β1i depends on the coding of Phaseit and would change if the coding was changed, for example, to effect
coding (see, e.g., Shadish, Kyse, & Rindskopf, 2013).

The minimal equations at the case level are
β0i ¼ γ00 þ u0i ð1:2Þ

β1i ¼ γ10 þ u1i: ð1:3Þ
The variance of u0i is τ00, the variance of u1i is τ11, and their covariance is τ01. These equations state that the baseline and change for
each case are a constant (average value) plus somedeviation from the average. In otherwords, none of the variation around the average
is explained. If there are enough cases, and some reasonable predictor variable is available (perhaps the baseline or effect of treatment
varies with age or sex), this predictor variable can be added to one or both equations as needed to become, for example,
β0i ¼ γ00 þ γ01Agei þ u0i ð1:4Þ

β1i ¼ γ10 þ γ11Agei þ u1i: ð1:5Þ
Generally, age would be centered or re-expressed in some other way to keep the interpretation of the intercept in each equation
meaningful. (Themeaning of the intercept termswill change unless Age is centered around itsmean, so caremust be used in comparing
the models without and with Age.)

Because the data from SCDs are in the form of time series, autocorrelation is a potential problem. This issue is not discussed in
detail here, partly because techniques for dealing with autocorrelation are still under development for nonlinear models. It is also
problematic to estimate autocorrelations with such short time series as are common in SCDs.

More detailed information onmultilevel modeling of SCD data in the non-Bayesian context can be found in Van den Noortgate and
Onghena (2003a, 2003b, 2007, 2008), Shadish et al. (in press) and Rindskopf and Ferron (in press), whereas Rindskopf (in press)
provides an overview of the Bayesian approach.

3. Bayesian inference

3.1. Conceptual basis of Bayesian statistics

Bayesian modeling begins with specification of one or more parameters (that is, unknowns whose value about which the
researcher wishes to make inferences). In the case discussed here, the parameters will be regression coefficients (γij) and
variances (τij) or standard deviations or precisions (i.e., the inverse of variances). Before conducting the study, the researcher may
have some knowledge of the values of these parameters; this knowledge is expressed in a probability distribution that describes
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the researcher's beliefs about what values of the parameter are more and less likely. If the researcher is completely ignorant about
a parameter, then the prior distribution is chosen to be noninformative or flat (on some scale); all values are equally likely. The
prior distributions are often chosen subjectively, which is viewed by classical statisticians (also called frequentists) as a weakness.
But in many cases prior studies or pretest data provide information about the parameters, and if so we should be able to make use
of this information. For this article, I will use prior distributions that are nearly uninformative, so that the data, not the prior,
affects the inferences.

The prior information is combined with the information in the data (summarized by the likelihood) to create the posterior
distribution, which captures our knowledge of the parameters at the end of the study. In the case of non-informative priors, the
posterior distribution is totally determined by the likelihood (that is, the information in the data). The posterior distribution is an
actual probability distribution, expressing beliefs about the relative probability of different values of the parameter. Like any other
probability distribution, areas under the curve (for a continuous-valued parameter) represent probabilities.

When parameters are estimated for a group of cases, as happens here with the baseline and change parameters, one typically
has two choices: Constrain the parameters to be equal across cases or estimate the parameter for each case separately with no
relationship across cases. If the parameters are constrained to be equal, there is no allowance for individual differences, and the
grand mean is used as the estimate for each case, which usually will be erroneous. If they are estimated separately for each case,
no use is made of information from other cases, which is a mistake if the cases have something in common. Bayesian statistics is in
between these two extremes, using information from all cases but not constraining all cases to be the same. The estimates are
shrunk from the individual value for each case toward the mean, with more shrinkage if (a) there is evidence that the cases are
very similar to each other or (b) the individual has little data; and less shrinkage if the evidence points to great differences among
cases or there is a large amount of data for the individual. (Shrinkage is toward the mean of similar, rather than all, people when
the model includes individual-level variables, such as Age in the example above.)

3.2. Advantages of Bayesian methods

Bayesian methods have several advantages in the analysis of SCD data (and more generally). Specific to SCDs, Bayesian
methods do not require large sample size (either in terms of number of cases or number of observations per case). Because most
SCDs consist of few cases, this advantage is relevant for almost all such studies.

More generally, Bayesian statistics considers parameters (unknowns) to have a probability distribution, whereas classical
statistics considers parameters as fixed quantities. Classical inference, therefore, depends on the concept of repeated sampling
from a population and bases inferences on the sampling distribution of statistics. In Bayesian statistics one can make probability
statements such as “The probability that the mean is greater than 0 is .93”, whereas in classical statistics such statements cannot
be made. (In classical statistics, the mean is a specific value; we just do not knowwhich value it is. Probability statements apply to
repetitions of the study, not to the single study being examined. A classical, or frequentist, interpretation is that in a large number
of repetitions of the study, 95% of the confidence intervals would contain the parameter.) The Bayesian interpretation seemsmore
natural to most people—so natural that the most common interpretation of a confidence interval (“There is a 95% chance that the
parameter is in this interval”) is the Bayesian one, which is wrong from the classical point of view.

Bayesians estimate a credible interval that is comparable to a frequentist's confidence interval in many ways, except for the
interpretation and the dependence on the prior distribution. But Bayesians calculate other quantities that are not used (and indeed
cannot be used) in classical statistics. For example, a Bayesian can calculate the probability that a treatment effect is positive, that it is
larger than somegiven size, or that it is small (between−c and c, where the value of c is chosen to be a small effect). One can also estimate
the probability that one parameter is larger than another; one use for this method is to estimate the probability that the treatment was
more effective for one person than another. One can also estimate the probability that one parameter is larger than another by at least a
certain amount or that the (absolute value of the) difference between two parameters is small (i.e., less than a given amount).

Although Bayesians generally do not test hypotheses about parameters, their results can frequently be expressed in those terms so
that those who are used to classical results can feel comfortable. Thus, interpreting a parameter divided by the standard error as
“significant”when the ratio is larger than 2 is similar to what frequentists do when calculating z or t ratios. Also, many Bayesians mix
Bayesian interpretation of parameter estimates with classical methods for model choice, such as when determining which terms to
keep in a regression equation.

Other advantages of Bayesian statistics come from the computationalmethods that are generally used, calledMarkov ChainMonte
Carlo (MCMC). Although the details are irrelevant (and beyond the scope of this article), the method allows one to take a sample of
any size from the posterior distribution of the parameters of the model. This method makes it easy to estimate any function of
parameters: Just specify the function, and you get a sample from that function as a consequence. This procedure also means that you
need not rely on the central limit theorem to get a confidence interval; in most cases, just look at the 2.5 and 97.5 percentiles of the
empirical distribution from the sample produced by MCMC and you will have a 95 percent confidence interval. (The exception is
extremely skewed variable distributions, such as those for variances that are close to 0; these require more care.)

Bayesian inference has a subtle advantage in the analysis of multilevel data from studies with few cases. The estimates of the
fixed effects the parameters γij in Eqs. (1.2) and (1.3) and their standard errors are affected by the uncertainty in estimates of the
random effects (the parameters σ2 and τij). If the random effects are estimated well, which happens with approximately 20 or
more cases, the uncertainty in their estimation will not influence the estimates of the fixed effects or their standard errors. But
with few cases, the effects may be larger. In most estimation methods currently used for multilevel data, the fixed effects are
estimated based on the point estimates of the random effects, which could be problematic in the situation where there are few
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cases. Fully Bayesian estimates of the fixed effects are not subject to this problem and are estimated by averaging over the various
values that the random effects could take on. (They are the marginal averages rather than the averages conditional on the point
estimates of the random effects.) The Bayesian fixed effects will generally have larger standard errors than empirical Bayes
estimates (used in most multilevel model programs) and thus wider confidence intervals. Empirical Bayes estimates will be
significant too often because their standard errors are underestimates.

For further information on Bayesian statistics, the basics are contained in Winkler (2002). A more advanced introduction, requiring
some statistical knowledge, is Lee (2012). A moderately advanced book, with applications and computing, is Gelman et al. (2013).

4. Nonlinear models (and GLMs)

Many SCDs have a dependent variable that is a count, such as the number of times a student initiates a social interaction or the
number of times (out of a particular number of observations) that a student displays disruptive behavior. These variables are not
usually close enough to normally distributed to use the usual linear additive model. The simplest distributions for these situations
are the Poisson (for a count over a period of time) and the binomial (for a count out of a certain fixed number of trials). There are
other distributions for counts, such as the negative binomial, which can be used in more complicated cases.

In these cases, the dependent variable is not a linear function of the predictors but some nonlinear transform of the dependent
variable. In the case of the Poisson distribution, the natural transform is the logarithm, so that the equation for observations is
Fig. 1. P
session.
ln ηit
� � ¼ β0i þ β1iPhaseit ð1:6Þ

ηit is the expected value of yit. We then specify that yit has a Poisson distribution with parameter ηit.
where
For the binomial distribution, the transform is the logarithm of the odds of the behavior occurring on a trial, and the equation

for observations is
ln
πit

1−πit

� �
¼ β0i þ β1iPhaseit : ð1:7Þ
The variable yit has a binomial distribution with mean nitπit where nit is the number of trials for that observation, and πit is the
probability of a response on a given trial. (Often there will be only a single value n for the whole study, but that is not necessary.)

These forms of the equation for observations are nonlinear—but only on the left hand side; the right hand side is the usual
linear additive model. These models are called generalized linear models, and except for the transformation and the distribution
of the variable, have some of the same characteristics as linear regression models.

If time is not included as a predictor variable (i.e., if the slope is zero within phases) then these models, while technically nonlinear,
represent straight flat lines. If time is included as a predictor, these models are not linear but represent curves. For some data (including
continuous normal data), this nonlinearity is necessary, because often the change in behaviorwhen the phase changes is not sudden, but
gradual, and this gradual change requires a curve rather than a straight line. (Note that a polynomial of small degree will not fit this
type of curve.) Bayesian software based on Bayesian inference Using Gibbs Sampling (BUGS; Lunn et al., 2009), such as WinBUGS
(Lunn et al., 2000), OpenBUGS, and JAGS (Plummer, 2003; JAGS stands for “Just Another Gibbs Sampler”), allows these models to be
easily fit.

Example 1. Bayesian generalized linear model for Lambert et al. (2006) data.
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lots of data from students in article by Lambert et al. (2006). The design was an ABAB design, and each student was observed at 10 time periods per
The dependent variable (y) was the number of times (out of 10) that the student behaved disruptively.
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Lambert et al. (2006) studied the effects of using response cards on the disruptive behavior and academic responses of
students during math lessons. Nine students in the fourth grade participated in the study; each was part of one of two larger
classrooms. These students had been selected as particularly disruptive students. The design was an ABAB design. The A
phase was the usual classroom procedure where the teacher asked a question and called on one student in the class to
respond, and the B phase involved the use of cards on which all the students wrote answers to the teacher's questions. During
each observation session, each student was observed during 10 15-second periods during which the student either did or did
not display disruptive behavior. Thus, each day every student had a score ranging from 0 to 10 on the number of periods of
disruptive behavior. The main interest is the proportion of times the student was disruptive.

Because the count was based on a fixed number of trials per day (10), the count is modeled as a binomial distribution with
an underlying probability π of showing disruptive behavior on a given trial. Although the model can be made to handle trend
lines and differences between the first AB sequence and the second AB sequence, an examination of the plot in Fig. 1 shows that
these effects, if they exist at all, would be small compared to themajor effect, which is the difference between the A and B phases.
(Of course, more detailed analyses may find interesting patterns in these data; see Shadish, Zuur, & Sullivan, 2014–in this issue)
Therefore, for illustrative purposes the model I will use is the simple one with no trend and one effect for the difference between
A and B phases:
ln
πit

1−πit

� �
¼ β0i þ β1iPhaseit ð1:8Þ

is the same as Eq. (1.7). The intercept of this equation β0i is the log-odds of a disruptive behavior during the baseline (A)
which
phase, and the slope β1i is the change in log-odds between the A phase and the B phase. The log-odds of a disruptive behavior
during phase B is therefore the sum β0i + β1i. Because most people do not interpret log-odds easily, we will transform back to
proportions using the inverse transform exp(x) / (1 + exp(x)), where x is the log-odds.

I will present two versions of the model. The first has no predictors at the individual level, and the second has the classroom as a
predictor.

4.1. Model 1: no case-level predictors

The equations for individuals for the first model are the same as Eqs. (1.2) and (1.3):
β0i ¼ γ00 þ u0i ð1:9Þ

β1i ¼ γ10 þ u1i: ð1:10Þ
For those who wish to understand theWinBUGS computer code that represents the model, I will describe the main part of it in
the next few paragraphs; those who wish can skip these parts without loss of continuity.

The data are arranged in a single file containing values of all the variables, both at the observation level and the person
level. Each subject's data is written with one line for each session (time of observation). Each line contains the subject
number, the count (dependent variable), a dummy variable for the phase, and the classroom (used in the next model.)

The most important part of the program code for the model is contained in the following lines:

The second line shows that the two lines that follow pertain to all 264 observations (an average of about 29 observations for
each of the 9 respondents). The next line specifies the equation for observations; the logarithm of the odds, called the logit, is a
built-in function in the program. Note that theta is used to represent a probability instead of pi. The term b0[subj[i]] specifies the
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b0 value (intercept) for the subject on which observation iwasmade. This structure is known as nested indexing, because it is not
the b0 value for observation i but the subject having that observation. The same applies to the term b1[subj[i]], which represents
the difference between the A and B phase for the subject on which observation number iwas made. The statement following says
that the observed dependent variable y for observation i has a binomial distribution with probability theta, out of a total of 10
trials.

The next set of lines is in a “for” loop over the range of individuals rather than observations. The lines of code show that the
intercepts and slopes (treatment effects) have a mean and a variation across students. The normal distribution in Bayesian
statistics specifies the precision = 1/variance, rather than the variance or standard deviation, for reasons that need not concern
us. (Precision is used in most of Bayesian statistics.) We can calculate the variance or standard deviation from the precision, as the
statements following the loop illustrate.

Table 1 contains some of the results. The computer programs used for modern Bayesian computation generally implement
an algorithm that generates a series of draws from the posterior distribution of the parameters (and functions of them); in this
case, we have a sample of 5000 points from the posterior distribution. For each parameter or function of parameters there are
several summaries in the default output, including the mean and standard deviation (equivalent to the standard error) of the
5000 draws and three percentiles: the 2.5, 50th (median), and 97.5 percentile. The mean and median are used as point estimates
of the parameter (if they differ much, it indicates that the posterior is skewed, so more care is needed, including examination of a
plot of the posterior distribution). Confidence intervals, called credible intervals in Bayesian statistics, can be either parametric
(mean plus or minus 1.96 standard errors for a 95 percent interval, if the sample size is large and the posterior is approximately
normal) or nonparametric (2.5 and 97.5 percentile points of the empirically generated sequence of values from the posterior
distribution).

In the table mu0 is the average baseline (phase A) logit (log-odds) of a disruptive behavior during an observation period; as a
logit of 0 is equivalent to a probability of .5, we know that mu0 = .83 indicates a much greater than 50% chance of disruptive
behavior during baseline. Luckily it is easy to create a variable (p.A; see complete code in Appendix 1) that tracks the probability
directly; the mean of p.A is estimated to be .69.

The average difference between phase A and phase B is−2.78, which a very large drop in the log-odds of disruptive behavior.
(This difference does not translate directly into a proportion because it is a nonlinear function the proportion, and would be
different for different phase A values.) A frequentist would conclude that this value is certainly significantly different from 0; it is
more than 10 standard errors from 0, and the 95% credible interval (2.5 and 97.5 percentiles of −3.33 and −2.30) does not
include 0. A Bayesian interprets the 95% credible interval as “there is a 95% probability that the parameter is in that interval” and
would note that 0 is not a plausible value for the parameter because it does not fall in the interval.

The variable phaseB is the sum of mu0 and mu1; it is the logit of disruptive behavior in phase B. The estimate of phaseB
is −1.95. The variable p.B is the inverse of the logit, which is a proportion; the probability of disruptive behavior during
phase B is .13, which is much lower than the .69 observed during phase A. The average reduction in the proportion of
observations with disruptive behaviors was p.A–p.B = p.AB, for which the estimate was .57. (Note that .69–.13 = .56, not
.57, due to rounding error.)

So the average treatment effect is very large, but how much variation is there across students in the treatment effect? The
variable sig1 measures the standard deviation in the treatment effect (on the log-odds scale); the median value is .57, which we
will round to .60 for convenience. Approximately 95% of the students should be within approximately −2.8 plus or minus 1.2
(after rounding both values), or between approximately −1.6 and −4.0. All represent a considerable lessening of the amount of
disruptive behavior. Using output not shown, we determined that the reduction in probability ranged from .37 to .63, with the
largest changes coming for those who initially showed the most disruptive behavior (those with lower initial levels could not
change as much).

One advantage of Bayesian methods is the computation of interesting probabilities that are not defined in classical modeling.
We have seen that the average drop in disruptive behaviors is large; what is the probability that the average drop is at least .40?
To calculate this probability, we merely count the proportion of times out of 5000 samples from the posterior distribution that the
Table 1
Results from model for data from Lambert et al. (2006).

Node Mean Sd 2.5% Median 97.5%

mu0 0.8334 0.2282 0.3848 0.8323 1.306
mu1 −2.782 0.2529 −3.327 −2.771 −2.301
phaseB −1.949 0.3253 −2.626 −1.941 −1.312
sig0 0.614 0.1967 0.3457 0.5759 1.096
sig1 0.6208 0.2724 0.2319 0.5724 1.285
p.A 0.6949 0.04771 0.595 0.6968 0.7868
p.B 0.1289 0.03631 0.06746 0.1255 0.2122
p.AB 0.566 0.03782 0.4868 0.5672 0.6363
Step.AB 0.9992 0.02827 1.0 1.0 1.0
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difference between phase A and phase B is at least .40 on the probability scale. This value turns out to be .9992, or very nearly 1,
which shows that not only is the point estimate of average change large, but it is nearly certain that it is larger than .40. (Note we
could also compute other probabilities of interest, such as the probability the average change is small, for example that it is less
than .05.)

4.2. Model 2: classroom as a case-level predictor

In the previous model, the intercepts and slopes are allowed to differ across students, but there is no explanation for why they
might differ. In the second version of the model, the students' classroom is used to explain differences among student intercepts
and slopes. As this article is about statistical methods and not research design, I will not go into the selection of variables. In this
case, older students tended to be assigned to the second classroom; perhaps these were students who had repeated a grade, but
that information is not available. For descriptive purposes, I will use class as a predictor, although it must be a proxy for some
other variable such as retention or age, or perhaps teacher characteristics.

The equations for this model are the same observation-level equation plus the following student-level equations:
Table 2
Output

Node

mu0
mu1
b2
b3
sig0
sig1
phase
p.A.1
p.B.1
p.AB.1
Step.A
phase
p.A.2
p.B.2
p.AB.2
Step.A
β0i ¼ γ00 þ γ01Classi þ u0i ð1:11Þ

β1i ¼ γ10 þ γ11Classi þ u1i: ð1:12Þ
This makes the model statement in the program slightly longer:
logit theta i½ �ð Þb−b0 subj i½ �½ � þ b1 subj i½ �½ � � phase i½ � þ b2 � class i½ � þ b3 � class i½ � � phase i½ �:
Here, b2 is the difference between the two classrooms in baseline disruptions, and b3 is the difference in the effect of
treatment between the two classrooms. Note that unlike b0 and b1, these do not differ across subjects.

A selection of the output is in Table 2. The parameters mu0 and mu1 are no longer the overall phase A effect and treatment
effect, but because classroom was coded as a dummy (0/1) variable, they represent classroom 1.

With two classrooms, there are two sets of all the functions of parameters discussed for the first model, one for each
classroom. As it turns out, the classes differ in baseline levels of disruptive behavior, but not in the treatment effect. The difference
in baseline levels of disruptive behavior between the two classes is the parameter b2, which is large (almost 1 on the logit scale)
and from the classical statistician's viewpoint is significant. The difference in treatment effects between classrooms (b3) is small –
only 1/5 of a logit (.22) – and does not differ significantly from 0. From the Bayesian perspective, the 95 percent credible interval
includes many small values, and the probability that the difference between classrooms in treatment effect is medium or larger is
not high. Even though b3was not clearly important, I left it in the model to illustrate the full version of the model. Another way to
examine the effect of including b2 and b3 is to notice that sig0 has been decreased to half the size of the first model, showing that
unaccounted for variability between students in baseline behavior has been decreased, although sig1, the standard deviation for
treatment effect, has not changed.
for the second model for data from Lambert et al. (2006).

Mean Sd 2.5% Median 97.5%

1.329 0.2138 0.9197 1.325 1.763
−2.901 0.3519 −3.596 −2.901 −2.205
−0.8953 0.2651 −1.446 −0.8926 −0.3683

0.217 0.4575 −0.6527 0.2331 1.088
0.3831 0.1418 0.1838 0.3567 0.7328
0.6433 0.2877 0.2295 0.6019 1.322

B.1 −1.571 0.379 −2.314 −1.567 −0.855
0.7886 0.03532 0.715 0.7901 0.8536
0.1785 0.05526 0.08997 0.1726 0.2984
0.6101 0.05284 0.496 0.6141 0.6996

B.1 0.9968 0.05648 1.0 1.0 1.0
B.2 −2.25 0.3647 −2.981 −2. −1.55

0.606 0.0436 0.5164 0.6067 0.6934
0.09993 0.03268 0.04828 0.09622 0.1752
0.5061 0.0428 0.4185 0.5071 0.5888

B.2 0.9898 0.1005 1.0 1.0 1.0
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Another interesting point is that p.AB.1, the average change in probability of disruptive behavior in classroom 1, is .61, although
p.AB.2, the same parameter for classroom 2, is .51. The apparent difference between the two classrooms in treatment effect is due to
the nonlinear nature of the logit transformation: On the logit scale, these differences are the same, but translated back to probabilities,
there is a difference.

Example 2. Intrinsically nonlinear model for Horner et al. (2005) data.

Horner et al. (2005) presented hypothetical data from three participants in a study to improve performance; the data are
plotted in Fig. 2. Although Horner et al. only presented percent correct, I have assumed that there is a fixed number of trials per
session. The dependent variable is the number of trials (out of 20) that the subject got a problem correct. Several aspects of the
plots are worth noting: (a) the data from the first phase for each subject are at a low level but not necessarily zero, (b) the change
between phases is gradual rather than abrupt, and (c) during the second phase the data settle down at a higher level than baseline
but not necessarily at 20 (reflecting that all items were correct).

These results suggest a model that resembles a logistic regression but with some additions: There must be parameters to allow
the curve to start above a probability of 0 and rise to a probability correct that is below 1. In a way, this curve resembles an item
response curve in item response theory; there is a floor (“guessing”) parameter, but there is an additional parameter for the
ceiling.

Another way in which this curve resembles an item response curve is that we are not interested in the intercept and slope as
parameters, but we are interested in the slope and the point at which the curve has risen some substantial fraction of the total
rise, perhaps the halfway point. In item response theory (IRT), this form of the model is the usual parameterization in terms of
item difficulty (halfway point of rise) and item discrimination (slope). It goes further in having not only the guessing parameter
(floor) of a 3-parameter model but also the additional (ceiling) parameter of a 4-parameter model (Waller & Reise, 2010). For the
purposes of SCDs, unlike IRT, the most interest is in the difference between the floor and ceiling, as this represent the size of the
experimental effect.

We construct the model in several stages to illuminate each of the complications beyond traditional logistic regression. First,
consider a traditional logistic regression model:
Fig. 2. P
shift to
number
ln
π

1−π

� �
¼ β0 þ β1X: ð1:13Þ
This equation is the usual intercept and slope model. The point at which the curve rises halfway, to a probability of .5, is when
the odds are .5/.5 = 1, and therefore the log-odds is zero. This result happens when 0 = β0 + β1X, or after rearranging terms,
when X = − β0/β1. Using this fact, we can rewrite the logistic regression equation as
ln
π

1−π

� �
¼ β0 þ β1X ¼ β1

β0

β1
þ X

� �
¼ β1 X−Hð Þ ð1:14Þ
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lots of hypothetical data from Horner et al. (2005). The design was a multiple baseline design, with a baseline phase followed by a treatment phase. The
treatment phase was at a different time for each participant. The dependent variable is not fully specified, but for each session, it is assumed to be the
of trials (out of 20) in which a correct behavior or answer occurred.
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H is the “halfway” point −β0/β1. Now the parameters of the model are the slope (β1) and the halfway point (H). To find
where
the predicted probability for a value of X, we exponentiate to get the odds, and divide the odds by the odds plus 1:
π ¼ exp β1 X−Hð Þð Þ= 1þ exp β1 X−Hð Þð Þð Þ: ð1:15Þ
The model is still the same curve as the logistic regression; it starts near 0 for low values of X and rises to nearly 1 for large
values of X. To make it start above zero and rise to a lower limit than 1, we put additional parameters in for the floor (F) and
ceiling (C):
π ¼ F þ C−Fð Þ exp β1 X−Hð Þð Þ= 1þ exp β1 X−Hð Þð Þð Þ: ð1:16Þ
Of course, in addition to the gradual change over sessions, we can also include a jump when the phase changes from baseline
to treatment. Each subject can have a different value for all parameters, and those parameters can have a distribution over
subjects allowing each subject's estimates to benefit from knowledge of the other subjects' parameters.

The primary interest is in the value of C − F, the change from floor to ceiling. This difference can vary over people, so we can
look at the average change across people, the variability across people (variance or standard deviation), and the individual values
for each person. For the Horner et al. (2005) data, the effects for the three respondents are .57, .66, and .72, which are quite large.
(They are also well below 1, which is the value of C – F in the usual logistic regression.)

Another issue is whether the curves rise in the order in which the phase changes. The first personwas the first to have a phase
change, followed by the second, and then the third. To assess the effect statistically, we look at the estimates of H for each
person: The estimates are 8.5, 12.3, and 18.6, meaning the curves rose to halfway between the floor and ceiling at these sessions
for the three people. These estimates are certainly the right order, but we can also ask whether there is a high probability that
the halfway point for person 2 is greater than for person 1 and similarly for person 3 compared to person 2. These probabilities
are estimated to be very close to 1. Thus, we are fairly certain we have estimated the right order of the subjects.
5. Discussion

Bayesian methods are useful in the analysis of data from SCDs because they satisfy the requirements of small-sample theory,
are more interpretable than results from classical statistics, and are computationally adapted to track interesting functions of
parameters. A Bayesian can obtain a credible interval (comparable to a classical confidence interval), and can calculate
probabilities of great interest that are not possible in classical statistics: The probability that a parameter is greater (or less) than
zero, large (greater than some specified value), or small. A Bayesian can calculate the probability that one parameter is larger than
another or is approximately equal to (within a small distance of) another. Furthermore, Bayesians can calculate probabilities for
transformations, such as logits (or their inverses), without using the delta method of classical statistics, which relies on large
sample theory. (The delta method uses derivatives of the transformation function to approximate the changes in a transformed
value. For small samples or skewed distributions the approximation may be poor.)

Fully Bayesian methods are more appropriate for SCD data than classical or empirical Bayes methods. When estimating a
parameter, fully Bayesian methods take into account uncertainty about all other parameters. Thus, standard errors may be larger
(and confidence intervals wider) when using fully Bayesian methods, but larger standard errors accurately reflect the totality of
the uncertainty about model parameters.

Fully Bayesian methods implemented with MCMC computational methods, such as in WinBUGS, OpenBUGS, and JAGS, can be
used to fit complicated models that are outside the scope of standard nonlinear models (e.g., GLMs).

Some of the more advanced aspects of Bayesian model fitting were not illustrated in this article. These aspects include tests for
convergence of the algorithm, model fitting, model diagnostics, alternative model parameterizations, selection of prior
distributions, and sensitivity analysis. Progress is being made in developing methods for estimating an effect size measure
comparable to the standardized effect size d in between-subject designs; Rindskopf et al. (2012) presented a Bayesian approach
using WinBUGS that allows not only estimation of d but also probability statements (including credible intervals) for d, and
Swaminathan, Rogers, & Horner (2014–in this issue) present another approach to this problem.

Bayesianmethods are not without weaknesses. The models are more complicated to set up because of the need to specify prior
distributions. The prior distributions can be made almost noninformative, but complete ignorance comes at a cost in
computational methods: Sometimes the calculations get lost in an area of the parameter space that causes an arithmetic error
(some parameter gets too large), and the procedure stops. This arithmetic error happens most frequently with variances or
precisions. It can be difficult to sort out and solve these problems.

In spite of the weaknesses, Bayesian methods are likely to become the preferred method of analysis for SCDs. They adequately
deal with the small sample sizes, and give estimates of quantities that are of direct interest to researchers. Interpretation of results
is much more natural than classical statistics, with probability statements that conform to common sense ways of thinking about
events.
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Appendix 1. Lambert et al. (2006) Model
Appendix 2. Lambert et al. (2006) output
Node statistics

Node Mean Sd MC error 2.5% Median 97.5% Start Sample

mu0 0.8334 0.2282 0.003606 0.3848 0.8323 1.306 5001 5000
mu1 −2.782 0.2529 0.004733 −3.327 −2.771 −2.301 5001 5000
sig0 0.614 0.1967 0.003855 0.3457 0.5759 1.096 5001 5000
sig1 0.6208 0.2724 0.008672 0.2319 0.5724 1.285 5001 5000
var1 0.4596 0.4711 0.01204 0.05378 0.3276 1.651 5001 5000
var0 0.4156 0.3216 0.006079 0.1195 0.3317 1.201 5001 5000
phaseB −1.949 0.3253 0.004945 −2.626 −1.941 −1.312 5001 5000
p.A 0.6949 0.04771 7.498E−4 0.595 0.6968 0.7868 5001 5000
p.B 0.1289 0.03631 5.527E−4 0.06746 0.1255 0.2122 5001 5000
p.AB 0.566 0.03782 7.195E−4 0.4868 0.5672 0.6363 5001 5000
Step.AB 0.9992 0.02827 3.898E−4 1.0 1.0 1.0 5001 5000

Disrupt.0[1] 1.046 0.165 0.003055 0.7259 1.044 1.378 5001 5000
Disrupt.0[2] 1.412 0.1913 0.00414 1.051 1.407 1.796 5001 5000
Disrupt.0[3] 1.298 0.1915 0.004737 0.9433 1.294 1.685 5001 5000
Disrupt.0[4] 1.292 0.1869 0.003711 0.9397 1.289 1.677 5001 5000
Disrupt.0[5] 1.136 0.1652 0.003469 0.8288 1.131 1.47 5001 5000
Disrupt.0[6] 0.368 0.1628 0.002744 0.04122 0.3691 0.6882 5001 5000



(continued)

Node statistics

Node Mean Sd MC error 2.5% Median 97.5% Start Sample

Disrupt.0[7] 0.6919 0.1694 0.003103 0.3678 0.6909 1.036 5001 5000
Disrupt.0[8] 0.02085 0.1556 0.003385 −0.2835 0.02156 0.3272 5001 5000
Disrupt.0[9] 0.184 0.1529 0.002972 −0.1074 0.1841 0.4905 5001 5000

Disrupt.1[1] −1.75 0.2232 0.003019 −2.208 −1.743 −1.327 5001 5000
Disrupt.1[2] −1.548 0.2022 0.002843 −1.973 −1.544 −1.164 5001 5000
Disrupt.1[3] −1.458 0.2138 0.003183 −1.886 −1.457 −1.056 5001 5000
Disrupt.1[4] −1.461 0.2186 0.00301 −1.912 −1.459 −1.037 5001 5000
Disrupt.1[5] −1.531 0.1913 0.00279 −1.912 −1.528 −1.166 5001 5000
Disrupt.1[6] −3.344 0.5026 0.01371 −4.467 −3.297 −2.508 5001 5000
Disrupt.1[7] −2.452 0.2815 0.004621 −3.038 −2.437 −1.933 5001 5000
Disrupt.1[8] −1.87 0.2648 0.007546 −2.424 −1.866 −1.371 5001 5000
Disrupt.1[9] −2.239 0.245 0.004045 −2.738 −2.236 −1.78 5001 5000

Disr.0[1] 0.7387 0.03164 5.843E−4 0.6739 0.7396 0.7987 5001 5000
Disr.0[2] 0.8024 0.02998 6.409E−4 0.741 0.8034 0.8577 5001 5000
Disr.0[3] 0.7837 0.03212 7.937E−4 0.7198 0.7848 0.8436 5001 5000
Disr.0[4] 0.7828 0.03144 6.201E−4 0.719 0.784 0.8425 5001 5000
Disr.0[5] 0.7556 0.0303 6.321E−4 0.6961 0.756 0.813 5001 5000
Disr.0[6] 0.5904 0.03916 6.602E−4 0.5103 0.5913 0.6656 5001 5000
Disr.0[7] 0.6653 0.03744 6.824E−4 0.5909 0.6662 0.7381 5001 5000
Disr.0[8] 0.5052 0.03866 8.409E−4 0.4296 0.5054 0.5811 5001 5000
Disr.0[9] 0.5456 0.0377 7.329E−4 0.4732 0.5459 0.6202 5001 5000

Disr.1[1] 0.1503 0.02816 3.781E−4 0.09901 0.1489 0.2096 5001 5000
Disr.1[2] 0.1773 0.02916 4.042E−4 0.1221 0.1759 0.2379 5001 5000
Disr.1[3] 0.1909 0.03273 4.86E−4 0.1318 0.189 0.2582 5001 5000
Disr.1[4] 0.1905 0.03332 4.667E−4 0.1288 0.1887 0.2617 5001 5000
Disr.1[5] 0.1796 0.02794 4.102E−4 0.1287 0.1783 0.2376 5001 5000
Disr.1[6] 0.03778 0.01667 4.787E−4 0.01136 0.03567 0.07527 5001 5000
Disr.1[7] 0.08171 0.02061 3.318E−4 0.04572 0.08036 0.1264 5001 5000
Disr.1[8] 0.1365 0.03066 8.53E−4 0.08136 0.134 0.2025 5001 5000
Disr.1[9] 0.09839 0.02156 3.598E−4 0.06079 0.09658 0.1443 5001 5000

Appendix 2 (continued)
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