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a b s t r a c t

Standard approaches to implement multiple imputation do not automatically incorporate
nonlinear relations like interaction effects. This leads to biased parameter estimates when
interactions are present in a dataset. With the aim of providing an imputation method
which preserves interactions in the data automatically, the use of recursive partitioning as
imputationmethod is examined. Three recursive partitioning techniques are implemented
in the multiple imputation by chained equations framework. It is investigated, using sim-
ulated data, whether recursive partitioning creates appropriate variability between impu-
tations and unbiased parameter estimates with appropriate confidence intervals. It is con-
cluded that, when interaction effects are present in a dataset, substantial gains are possible
by using recursive partitioning for imputation compared to standard applications. In addi-
tion, it is shown that the potential of recursive partitioning imputation approaches depends
on the relevance of a possible interaction effect, the correlation structure of the data, and
the type of possible interaction effect present in the data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Today’s state of the art solution for handling missing data is multiple imputation. In approaches to implement multiple
imputation, different methods are available to use the information from the data at hand (Van Buuren, 2012). The common
element in these methods is that they model the relations between variables. Hereby, it is particularly important to reflect
the structure of the data since otherwise, parameter estimates undermultiple imputationwill be biased. Caution is therefore
neededwhen data contain nonlinear structures like a quadratic relation. Approaches to implementmultiple imputation, like
Multiple Imputation by Chained Equations (MICE; Van Buuren, 2007), do not automatically incorporate nonlinear relations.
We focus on a special case of nonlinear relations, namely interaction effects. For the purpose of this study, both cross-
products and quadratic terms are denoted by interactions.

MICE is a popular approach for implementingmultiple imputation because of its flexibility. InMICE,multivariatemissing
data are imputed on a variable by variable basis, called fully conditional specification (Van Buuren, 2007). This means that
per variable imputations are created, such that for each incomplete variable a specified imputation model is required. In
these imputationmodels, interactions can bemodelled in twoways: first, by specifyingmodels including interaction effects
manually and second by imputing subgroups of the data separately. For example, one could create distinct imputation
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models for males and females. Besides the fact that both approaches are somewhat cumbersome, they are often unusable
as the structure of the data is usually unknown before imputation. Therefore, models should preferably be fitted to the data
in an automatic fashion without unnecessary user involvement.

A technique that can handle interactions with ease is recursive partitioning (Burgette and Reiter, 2010; Hand, 1997).
One of the first implementations of recursive partitioning is called Automatic Interaction Detection (Morgan and Sonquist,
1963). The recursive partitioning technique models the interaction structure in the data by sequentially splitting a dataset
into increasingly homogeneous subsets (Breiman et al., 1984). Essentially recursive partitioning finds the split that is most
predictive of the response variable by searching through all predictor variables (Merkle and Schaffer, 2011). Within the
subgroups created from one predictor variable, the algorithm goes on to partition the data based on other variables or other
splits of the same predictor. The resulting series of splits can be represented by a tree structure like Fig. 1, to which we will
return in Section 2. Since splits are conditional on previous splits, the variables used may indicate interaction effects. By
constructing models in this manner, possible interactions are automatically taken into account.

Others have worked on this idea of combining recursive partitioning with imputation methods, e.g., Burgette and Reiter
(2010), Iacus and Porro (2007, 2008), Nonyane and Foulkes (2007), Stekhoven and Bühlmann (2012), and Van Buuren (2012,
p. 83). The main shortcoming of most of the proposed methods is that recursive partitioning is combined with single impu-
tation instead of multiple imputation. Therefore, they cannot be used for making appropriate statistical inferences. Another
shortcoming is that, except for Burgette and Reiter, the performance of these methods is not investigated on data contain-
ing interaction effects. In the current study, we would like to overcome these shortcomings by providing a framework for
connecting recursive partitioning techniques with multiple imputation. This type of imputation takes into account the un-
certainty associated with themissing data (Rubin, 1996), which results in parameter estimates with appropriate confidence
intervals.

The purpose of our study is to gain insight intowhether theuse of recursive partitioning inmultiple imputation (i.e.,MICE)
is a convenient way to preserve interaction effects. We consider two main questions: which recursive partitioning tech-
niques create appropriate variability between repeated imputations?What are the statistical properties (e.g., bias, coverage,
confidence interval width) of estimates of the interaction parameters? In gaining insight into these questions, distinctions
will be made between different types of interactions. In addition, the two questions will be considered for both continu-
ous and categorical data. Burgette and Reiter (2010) embarked on the implementation of recursive partitioning in MICE
and demonstrated the performance of the method on a single model with continuous predictor and response variables. We
want to elaborate on the work of Burgette and Reiter and, to be complete, also consider categorical predictor and response
variables. Different results are expected for both types of data since recursive partitioning techniques are known to perform
especially well for data with interactions between categorical variables (Dusseldorp et al., 2010).

This paper is organized as follows. In Section 2,MICEwill first be elaborated further after which twomain recursive parti-
tioning techniques will be considered, namely Classification And Regression Trees (CART; Breiman et al., 1984) and random
forests (Breiman, 2001). Subsequently, incorporation of recursive partitioning in the MICE framework will be presented. In
Section 3 different interaction types will be discussed, which will be observed in answering the research questions. Thenwe
make the distinction between predictor and response variables either being continuous (Section 4) or categorical (Section 5).
In both Sections 4 and 5, a simulation study is described, carried out to investigate which of the discussed methods are con-
venient to preserve interaction effects, followed by the results of the simulation study. The results from both simulation
studies will be discussed in Section 6, at the end of which some final conclusions are given.

2. MICE and recursive partitioning

2.1. Multiple imputation by chained equations

Imagine a set of variables, y1, . . . , yj, some or all of which havemissing values. Handling these data usingMICE comprises
threemain steps: generatingmultiple imputation, analyzing the imputed data, and pooling the analysis results (Van Buuren,
2007). The main idea is to impute each incomplete variable using its own imputation model. All missing values are initially
filled in at random. The first variable with at least one missing value, say y1, is then regressed on the remaining variables,
y2, . . . , yj. This is restricted to individualswith observed values for y1. Themissing values in y1 are now replacedby simulated
draws from the posterior predictive distribution of y1. The next variable with missing values, say y2, is then regressed on
all the other variables, y1, y3, . . . , yj. This estimation is restricted to individuals with observed y2 and uses the imputed
values of y1. Again, missing values in y2 are replaced by draws from the posterior predictive distribution of y2. This process
is repeated for all other variables withmissing values in turn. To stabilize the results this cycle is iterated a number of times,
producing one imputed dataset. The entire procedure is repeated m times, yielding m imputed datasets. Each complete
dataset is analyzed separately by MICE, after which the results are pooled.

2.2. Recursive partitioning

In this study we consider two main recursive partitioning techniques, namely CART and random forests. We will first
elaborate on CART and return to random forests later on in this section. Depending on the response variable of interest
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Fig. 1. Example of a classification tree representing an interaction, visualized by partykit (Hothorn and Zeileis, 2013). The tree has four end nodes
containing subsets of the data. For each subset, the distribution of the data on having a disease is shown. The subsets are more homogeneous with respect
to suffering from a disease (i.e., the response variable) than the initial complete dataset.

being categorical or continuous, CART is referred to as classification trees or regression trees respectively (Hastie et al.,
2001). The only differences in the algorithm for classification and regression trees concern the criteria for splitting the data
and pruning the trees. We refer to Hastie et al. for a detailed discussion.

Let us consider an example of a classification tree. Imagine a dataset with information about whether or not people suffer
from a disease (55 people do, 45 people do not), in addition to some background variables (e.g., their gender and age). Fig. 1
shows the classification tree created on these data. This model suggests that there is an interaction between gender and age.
In other words, the relation between age and suffering from a disease differs for males and females.

In an attempt to solve the interaction problem in multiple imputation, Burgette and Reiter (2010) used CART for speci-
fying the imputation model in MICE. According to their study, application of a CART imputation engine in MICE can result
in ‘‘more reliable inferences compared with naive applications of MICE’’ (p. 2). However, both imputation models resulted
in confidence intervals of the parameter estimates that did not cover the corresponding truths. This may partly be due to
a lack of incorporation of uncertainty in the imputation models. In addition, it can be explained by imperfect imputation
models. It is for example well known that the sequential nature of CART may lead to suboptimal and unstable trees (Hastie
et al., 2001; Marshall and Kitsantas, 2012; Strobl et al., 2009). First, for every (sub)set the algorithm seeks the best split,
locally optimizing the tree by creating the most homogeneous subsets. The algorithm chooses this best split with no regard
for future splits. As a result, the procedure may not produce the best possible tree with the most homogeneous subsets in
the leaves. Besides, variable selection is biased in favour of variables with certain characteristics (e.g., variables with many
categories), even if these variables are no more informative than their competitors. Lastly, trees can be unstable because of
their hierarchical nature where all splits depend on previous splits. This may allow trees created on two datasets that vary
only with respect to sample variance to differ markedly from one another.

Random forests differ fromCART in that it creates numerous trees, instead of only one. By averagingmany trees it reduces
the variance and prevalence of unstable trees (Hastie et al., 2001). Variation is produced in the individual trees, resulting
in a more robust solution and making the technique more accurate. This variation can be incorporated by, among other
procedures, bootstrapping and random input selection (Breiman, 2001). With bootstrapping, before growing each tree, a
random selection with replacement is made from the members of the dataset. With random input selection, a small group
of input variables is selected for finding the best split, as opposed to using all the variables, as CART does. By the application
of random forests in combination with multiple imputation, a degree of uncertainty can be incorporated in the imputation
model, making it more eligible for our purpose of creating parameter estimates with appropriate properties. As a result,
implementing random forests may be another step forward in solving the interaction problem in imputation.

2.3. Multiple imputation with recursive partitioning

We propose three recursive partitioning techniques to be incorporated as imputation method in the MICE framework:
CART, restricted random forests using bootstrapping only (denoted by Forest-boot), and random forests by a combination
of bootstrapping and random input selection (denoted by Forest-RI). For the implementation of CART in MICE, suppose a
data matrix with multivariate missing values. The missing values are initially imputed by random draws from the observed
values on each related variable. Subsequently a tree is fitted on the first variable with at least onemissing value, say y1, using
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the remaining variables as predictors. Only members with an observed value on y1 are taken into account. This results in a
tree with several leaves, each containing a subset of the data. A member with a missing value on y1 is put down this tree
and ends up in one of the leaves. From the subset in this leaf one value on y1 is randomly selected and used for imputation.
This procedure is performed for every variable with missing values. A complete cycle along all incomplete variables is re-
peated several times, yielding one imputed dataset. Ultimately this process is repeated a number of times, yielding multiple
imputed datasets. Algorithm 1 shows an implementation of recursive partitioning in MICE. The iterative steps are based
on Van Buuren (2012); step 2 is entirely new and describes a general implementation of single tree-recursive partitioning
in the MICE framework. In the current study, we used CART to fit a tree (step 2a). However, alternative methods can be
plugged in here (e.g., ctree [conditional inference trees], Hothorn et al., 2006; CHAID, Kass, 1980; C4.5, Quinlan, 1993). To
apply Algorithm 1 to random forests (i.e., multiple-tree recursive partitioning) some adjustments were needed in step 2.
Random forests first draws k bootstrap samples from the complete dataset. One tree is fitted for every bootstrap sample,
either with (Forest-RI) or without (Forest-boot) selection of a small group of input variables for finding the best split at each
node. Would we have used the averaged tree of this ensemble for imputation, less uncertainty would be incorporated in
the imputation model, considering that the averaged tree from a random forest is more optimal and stable than the tree ob-
tained by CART. Since this is undesirable, each and every tree from the ensemble of trees is used separately for imputation
in order to represent the uncertainty associated with the missing data. The algorithm for the implementation of random
forests in MICE can be found in Appendix A.

To implement CART, Forest-boot and Forest-RI as imputation methods in mice (Van Buuren and Groothuis-Oudshoorn,
2011), the rpart (Therneau et al., 2013) and randomForest (Liaw andWiener, 2002) packages in R (R Development Core
Team, 2013) are used. The R-code for the implementation of CART and random forests in mice is given in the supplementary
material available in the electronic version of this article (see Appendix C). In the next section, different types of interactions
will be discussed, which will be distinguished in testing the imputation methods.

3. Interaction types

In gaining insight into whether the use of recursive partitioning in multiple imputation is a convenient way to preserve
interaction effects, we will distinguish different types of interactions. First, interactions may vary with regard to the
correlation (r) between the variables that interact. This correlation may range from −1.0 to 1.0. Second, the effect size of an
interaction effect, which implies the strength of the relation between an interaction effect and another (pair of) variable(s),
may range. In other words, the relevance of an interaction effect may vary. A third useful distinction is the classification of
interactions as being ordinal versus disordinal (Lubin, 1961). These latter two interaction types will be considered regarding
categorical variables but one can imagine these to occur with continuous variables too.

In an ordinal situation, the rank order of one variable is constant across the categories of another variable. In contrast,
in a disordinal situation the rank order of one variable differs across the categories of the other variable. An interaction
may be ordinal with respect to none, one or multiple variables (Aiken and West, 1991). In accordance with Schepers and
Van Mechelen (2011) this implies that four types of two-way interactions may be distinguished, and they are presented
in Fig. 2. To illustrate, the figure displays four probability profiles of suffering from a disease for males and females across
two types of interventions. The rank ordering of the intervention categories is consistent across gender in cases A and C. In
other words, with respect to the intervention variable, the interaction is ordinal in these cases. Similarly, the interaction is
ordinal with respect to gender in cases A and B, i.e., the rank ordering of gender is constant across the interventions. From
a technical point of view, the ordinal–disordinal and disordinal–ordinal interactions are equal. That is, one of the variables
in the interaction is ordinal and one of the variables is disordinal with respect to the other.

Algorithm 1 Implementation of recursive partitioning (single tree) in MICE
Suppose a datamatrix Y , where Yj is the jth columnof the partially observed variables (ordered to have increasing numbers
ofmissing values somodels are buildwith asmuch information as possible), p is the number of partially observed variables,
Y obs
j is the observed data and Ymis

j is the missing data in the jth column, and Ẏ is the currently imputed data matrix Y .

1. For j = 1, . . . , p, fill in initial starting imputations Ẏ 0
j by random draws from Y obs

j , and define a data matrix Ẏ .
2. For j = 1, . . . , p, replace Ẏ 0

j as follows, yielding one imputed dataset:
(a) Fit one tree (using CART or alternative methods) on Ẏ , restricted to members in Y obs

j . This results in a tree with several
leaves, each of which includes a subset of Y obs

j , which will be called donors.
(b)For members in Ymis

j , determine in which leaf they will end up according to the tree fitted in step 2a.
(c) For members in Ymis

j , randomly select one Y obs value from the donors of the leaf ended up in step 2b. Replace the
originally missing values of Ẏ 0

j with these imputation values and append the complete version of Ẏj to Ẏ prior to
incrementing j.

3. Repeat step 2 so as to have performed it l (number of iterations) times.
4. Repeat steps 1-3m times, yieldingm imputed sets.



96 L.L. Doove et al. / Computational Statistics and Data Analysis 72 (2014) 92–104

(A) Double ordinal. (B) Ordinal–disordinal.

(C) Disordinal–ordinal. (D) Double disordinal.

Fig. 2. Probability profiles of suffering from a disease for males and females across a set of two interventions. Classifications have been made according to
interactions being ordinal or disordinal with respect to the variables that interact.

Fig. 3. A disordinal–ordinal interaction. The dotted line indicates a cutpoint for recursive partitioning to start splitting, in order to create homogeneous
subsets.

As an illustration of how recursive partitioning handles these interaction types, Fig. 3 displays the disordinal–ordinal
interaction. The dotted line indicates a possible cutpoint for recursive partitioning to start splitting, in order to create homo-
geneous subsets. In our example the dataset is split according to intervention type. That is, one subset is created comprising
people in intervention 1 and one subset is created comprising people in intervention 2, where the probability of suffering
from a disease is smaller for people in the first compared to the second group. If both subsets are hereafter split according
to gender, four subsets would be created and the interaction effect would be detected. A similar procedure can be used for
the ordinal–disordinal interaction (case B of Fig. 2). For the double ordinal interaction, either intervention or gender may be
selected as first split. Both splits would createmore homogeneous subsets compared to the complete data set. After splitting
on the remaining predictor variable, the interaction would be detected.

In the presence of a perfectly symmetric double disordinal situation like case D of Fig. 2, there is no obvious split to start
with. The two variables show nomain effect but a perfect interaction, a situation known as the Exclusive-Or (XOR) problem.
Strobl et al. (2009) describe the problem as follows:

. . .due to the lack of a marginally detectable main effect, none of the variables may be selected in the first split of a
classification tree, and the interaction may never be discovered. . . .However, a logistic regression model would not
be able to identify an effect in any of the variables either, if the interaction was not explicitly included in the logistic
regression model. (p. 28)



L.L. Doove et al. / Computational Statistics and Data Analysis 72 (2014) 92–104 97

Recursive partitioning techniques may be able to approximate the XOR problem by two features, namely random fluctua-
tions in the data and random variable selection. In order to start with the first, random fluctuations are present in any data
set. These fluctuations may be enhanced by drawing bootstrap samples from the data, as is the case in both the Forest-boot
and Forest-RI method. On top of that, by selecting splitting variables randomly (as is the case in Forest-RI), the chance in-
creases that a variable with a weak main effect is selected for splitting. This can be explained by the fact that, at least in
some trees, some of the competitors of the variable may not be available for splitting. Consequently, random fluctuations
and random variable selection increase the chance that a double disordinal interaction is detected.

The distinguished interaction effectswill be observedwhile considering the use of recursive partitioning inMICE.Wewill
now proceed to the simulation study carried out to investigate which recursive partitioning methods preserve the different
interaction effects in multiple imputation. This will be done separately for data with only continuous (Section 4) and only
categorical variables (Section 5).

4. Continuous predictor and response variables

4.1. Simulation study

The performance of CART, Forest-boot and Forest-RI were compared with the default imputation method in mice for
continuous data, i.e., predictivemeanmatching (denoted by Pmm). The simulation study used to gain insight into the perfor-
mance of the four imputationmethods in the presence of interaction effects can be described on the basis of five components.

Component 1: Data generation model. Data were generated using three different regression models, where each model
included a two-way interaction effect. The models are specified in Eqs. (4.1)–(4.3), for i = 1, . . . ,N (based on Burgette and
Reiter, 2010):

y1,i = β0 + β1x1,i + β2x2,i + β3x3,i + β4x8,i + β5x9,i + β6x23,i + εi, (4.1)

y2,i = β0 + β7x1,i + β8x2,i + β9x3,i + β10x8,i + β11x9,i + β12x1,ix2,i + εi (4.2)

and

y3,i = β0 + β13x1,i + β14x2,i + β15x3,i + β16x8,i + β17x9,i + β18x8,ix9,i + εi, (4.3)

where the intercept β0 = 0 and the errors εi had independent, standard normal distributions. Artificial data with 10
predictors were randomly drawn from a multivariate normal distribution where all of the first four predictor variables
(x1 to x4) had pairwise correlations of r = 0.5 and all of the last six predictor variables (x5 to x10) had pairwise correlations
of r = 0.3. As a result, models (4.1)–(4.3) contained interaction effects where the variables that interact had correlations of
r = 1.0, r = 0.5 and r = 0.3 respectively. To clarify, not all predictor variables were part of the model under study and
predictor variables 1–4 were not related to predictor variables 5–10.

Component 2: Design factor. We varied the values of the effect size (f 2) of the three interaction terms, having three levels:
a small effect, a medium effect and a large effect (Cohen, 1988). This corresponds to f 2 = 0.02, f 2 = 0.15 and f 2 = 0.35.
We realized these effect sizes by varying the values of parameters β6, β12 and β18, while adapting the other parameters such
that the total explained variance of the dependent variable was approximately 50%. The exact values of the parameters can
be found in Appendix B.

Component 3:Missing data creation. From each of the 3×3 combination of model and effect size, N = 1000 observations
were simulated. Then, 50% univariate missing data were created in y via a missing at random mechanism that depends on
x9 and x10. For the purpose of improving imputation procedures, the auxiliary variables (i.e., x4, x5, x6, x7, x10) were also
included in the missing data model (Collins et al., 2001).

Component 4: Parameter values that control aspects of the MICE-algorithm or the tree fitting. Since the missing data were
univariate, the number of iterations l (step 3 of Algorithm 1) was set to 1. Steps 1–3 of Algorithm 1 were repeated m = 20
times (Graham et al., 2007), resulting in 20 imputed datasets. A minimum leaf size of 5 was used for creating the regression
trees, and CART only applied those splits that decreased the overall lack of fit by at least a factor 0.0001. This resulted
in relatively large trees which was recommended to minimize bias. The number of bootstrap samples k, taken from the
complete dataset in Forest-boot and Forest-RI, was set to 100 (i.e., 100 trees were created) to ensure that every member
was used for fitting a tree at least a few times. Besides, 3 input variables were randomly selected for finding the best split at
each node in Forest-RI.

Component 5: Outcome measures. The performance of the methods was evaluated over 200 simulations on the following
outcome variables (based on Van Buuren, 2012): bias, coverage, width of the confidence interval, and estimated proportion
of the variance attributable to the missing data (λ̂). The bias, which is the average difference between the true value of the
parameter being estimated (the estimand) and the value of the estimate, should be close to 0. The coverage is the percentage
of cases where the value of the estimand is located within the 95% confidence interval around the estimate and should be
95% or higher. The width of the 95% confidence interval should be as small as possible (as long as coverage does not fall
below 95%) and is an indicator of statistical efficiency. Lastly, as the proportion of the variance attributable to the missing
data, λ̂ is an indicator of the severity of the missing data problem.
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Table 1
Statistical properties of parameter estimates for model (4.1), containing an quadratic relation (considered to be an interaction effect between variables
that have a correlation r = 1.0) with a medium effect size. β6 is the parameter of the interaction effect.

β Method Bias Cova CIb λ̂c β Method Bias Cova CIb λ̂c

β0 Pmm 0.120 0.42 0.223 0.456 β4 Pmm 0.001 0.97 0.199 0.493
CART 0.037 0.82 0.180 0.198 CART −0.031 0.74 0.155 0.200
Forest-boot 0.047 0.83 0.207 0.345 Forest-boot −0.053 0.77 0.179 0.357
Forest-RI 0.067 0.73 0.213 0.355 Forest-RI −0.062 0.77 0.183 0.364

β1 Pmm −0.002 0.95 0.233 0.500 β5 Pmm −0.001 0.95 0.225 0.592
CART −0.026 0.78 0.181 0.205 CART −0.058 0.58 0.158 0.235
Forest-boot −0.043 0.82 0.206 0.341 Forest-boot −0.083 0.57 0.187 0.407
Forest-RI −0.040 0.89 0.214 0.364 Forest-RI −0.089 0.57 0.193 0.419

β2 Pmm −0.011 0.95 0.229 0.482 β6 Pmm −0.109 0.08 0.119 0.353
CART −0.044 0.72 0.181 0.204 CART −0.034 0.69 0.108 0.231
Forest-boot −0.056 0.80 0.210 0.365 Forest-boot −0.046 0.69 0.126 0.389
Forest-RI −0.049 0.88 0.214 0.363 Forest-RI −0.067 0.47 0.129 0.393

β3 Pmm 0.001 0.93 0.232 0.492
CART 0.029 0.81 0.182 0.209
Forest-boot 0.018 0.92 0.210 0.359
Forest-RI −0.011 0.96 0.216 0.371

a Coverage, i.e., the percentage of cases where the value of the estimand is located within the 95% confidence interval around the estimate.
b Width of the 95% confidence interval around the estimate.
c Estimated proportion of the variance attributable to the missing data.

Table 2
Statistical properties of interaction parameter estimates in the context of continuous predictor and response variables.

β ra Method Small effect size Medium effect size Large effect size
Bias Covb CIc λ̂d Bias Cova CIb λ̂c Bias Covb CIc λ̂d

β6 1.0 Pmm −0.040 0.74 0.11 0.321 −0.109 0.08 0.119 0.353 −0.161 0.01 0.129 0.396
CART −0.007 0.82 0.105 0.211 −0.034 0.69 0.108 0.231 −0.042 0.60 0.109 0.258
Forest-boot −0.014 0.92 0.123 0.371 −0.046 0.69 0.126 0.389 −0.059 0.51 0.124 0.390
Forest-RI −0.020 0.93 0.125 0.373 −0.067 0.47 0.129 0.393 −0.096 0.21 0.131 0.416

β12 0.5 Pmm −0.040 0.80 0.139 0.325 −0.119 0.14 0.149 0.359 −0.179 0.03 0.164 0.405
CART −0.013 0.82 0.133 0.212 −0.057 0.58 0.135 0.223 −0.086 0.37 0.140 0.247
Forest-boot −0.018 0.94 0.154 0.361 −0.071 0.59 0.157 0.381 −0.106 0.29 0.162 0.399
Forest-RI −0.026 0.92 0.158 0.374 −0.090 0.43 0.160 0.381 −0.139 0.08 0.168 0.417

β18 0.3 Pmm −0.077 0.49 0.154 0.371 −0.227 0 0.161 0.385 −0.346 0 0.176 0.415
CART −0.049 0.71 0.147 0.253 −0.154 0.07 0.151 0.271 −0.230 0.01 0.158 0.285
Forest-boot −0.057 0.79 0.173 0.416 −0.170 0.02 0.179 0.439 −0.254 0 0.188 0.458
Forest-RI −0.061 0.82 0.177 0.428 −0.185 0 0.183 0.448 −0.282 0 0.192 0.465

a Correlation between the variables that interact.
b Coverage, i.e., the percentage of cases where the value of the estimand is located within the 95% confidence interval around the estimate.
c Width of the 95% confidence interval around the estimate.
d Estimated proportion of the variance attributable to the missing data.

4.2. Results

The results for model (4.1), containing a medium effect size interaction, are presented in Table 1. The problem noted in
the introduction is clearly illustrated. That is, the default application of mice (i.e., Pmm) does not automatically incorporate
possible interaction effects, leading to biased estimates of the interaction parameter (−0.109) and a low coverage (0.08)
after imputation. When we focus on the parameter estimates of the interaction effect over the four imputation methods, it
turns out that recursive partitioning performs properly better than Pmm.However, for the recursive partitioning imputation
methods, the biases of the main effects are somewhat larger and the coverages are smaller compared to Pmm. This holds in
particular for β4 and β5, which are the parameter estimates for themain effects of predictor variables that have a correlation
of r = 0.3 with other predictors.

As the focus of the paper is on the statistical properties of interaction parameter estimates, for the remainder designs
of models (4.1)–(4.3), we present only the results with respect to the interaction effects. Concerning the main effects of
these designs, similar patterns were obtained as shown in Table 1. That is, results somewhat deteriorate by using recursive
partitioning instead of Pmm for imputation, especially for main effects of predictor variables that have a relatively small
correlation with other predictors. Table 2 presents the results of the simulation study regarding the interaction parameters
β6, β12 and β18, with respect to the three investigated effect sizes. The statistical properties of estimates of these parameters
will be discussed considering the imputationmethods, the effect sizes of the interaction effects and the correlation between
variables that interact.

All four imputationmethods underestimate the interaction effects to some degree, but they show that there are substan-
tial gains possible in using the three recursive partitioning methods rather than standard mice for imputation. Firstly, the
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estimates are closer to the true values when recursive partitioning is used as imputation method, i.e., the biases are smaller.
Secondly, Table 2 shows that CART, by all means, ismore efficient than Pmm. That is, confidence intervals are smaller but not
at the expense of coverages. Thirdly, the advantage of random forests in incorporating uncertainty in the imputation model
is shown by the wider confidence intervals of Forest-boot and Forest-RI, with little difference between them. These wider
confidence intervals result in higher coverages for the design with small effect sizes, despite of the somewhat higher biases
compared to CART. In contrast, the wider confidence intervals for Forest-boot and Forest-RI cannot compete with the larger
biases in the designs with medium and large effect sizes, which results in lower coverages. The λ̂ parameters estimated are
around 0.2 when CART is used for imputation, indicating a modest missing data problem. The higher values for λ̂ when ran-
dom forests and especially Pmm are used indicate a more difficult problem for these imputationmethods, in which the final
statistical inferences are more highly dependent on the way in which the missing data were handled (Van Buuren, 2012).

When it comes to the effect sizes it may further be noted that, in general, though none of the recursive partitioning
methods is far off when the effect size of an interaction is small, results deteriorate as the effect size of an interaction
increases. Also with regard to the three interaction effects with varying correlations between the variables that interact,
clear graduations can be seen. Results improve as the correlation between variables that interact increases, namely biases
are smaller and the imputation methods are more efficient (i.e., higher coverages while confidence intervals are less wide).
The tendencies regarding effect sizes of interactions and correlations between variables, can combine to result in coverages
that are extremely low. In particular when interaction effects between variables that have a relatively low correlation, have
a high effect size.

We conclude with a note on the computational performance of the four imputation methods. Running the simulations
for each 3 × 3 combination of model and effect size on an Intel Core i7 took 2.8 min for pmm, 3.7 min for CART, 80 min for
Forest-boot and 72.1 min for the Forest-RI imputation approach (with 200 simulations). Both model and effect size had no
appreciable effect on the computation time.

5. Categorical predictor and response variables

In this section, the performance of CART, Forest-boot and Forest-RI as imputation method in mice is investigated
regarding categorical predictor and response variables.

5.1. Simulation study

The performance of the three recursive partitioning imputation methods will be compared with the following standard
application of mice: logistic regression imputation (denoted by Logreg). In the performed simulation study, the same five
components can be recognized as in the simulation study described in Section 4.1.

Component 1: Data generation model. Data were generated using three different logistic regression models: one with
a double ordinal interaction, one with a disordinal–ordinal interaction and one with a double disordinal interaction. The
models are specified in Eqs. (5.1)–(5.3) respectively:

logit[P(Y1 = 1)] = α0 + α1d1 + α2d2 + α3d3 + α4d4 + α5d8 + α6d9 + α7d1d2, (5.1)

logit[P(Y2 = 1)] = α0 + α8d1 + α9d2 + α10d3 + α11d4 + α12d8 + α13d9 + α14d3d4 (5.2)

and

logit[P(Y3 = 1)] = α0 + α15d1 + α16d2 + α17d3 + α18d4 + α19d8 + α20d9 + α21d8d9, (5.3)

where the intercept α0 = 0, and d1, d2, d3, d4, d8 and d9 are binary predictor variables (i.e., dummies). Artificial data
including 10 predictor variables were randomly drawn from a binomial distribution. To clarify, the predictor variables were
uncorrelated and they were not all part of the models under study. Variables that were part of the models consisted of
two categories, the other variables had three categories. Incorporation of the interaction types was realized by the values
assigned to the parameters α that were part of the interaction effects (e.g., α1, α2, α7 in model (5.1)).

Component 2: Design factor. We varied the values of the effect size of the three interaction terms, using the odds ratio as
an index. Haddock et al. (1998) have provided guidelines for interpreting the magnitude of an odds ratio: ‘‘As general rules
of thumb, odds ratios close to 1.0 represent a weak relationship between variables, whereas odds ratios over 3.0 for positive
associations (less than one-third for negative associations) indicate strong relationships’’ (p. 342). We realized weak and
strong effect sizes by varying the values of parameters α7, α14 and α21, while adapting the other parameters such that the
base rate was approximately 0.50 for all models. The exact values of the parameters can be found in Appendix B.

Component 3:Missing data creation. For each 3 × 2 combination of model and effect size, 1000 observations were simu-
lated. Then, 50% univariate missing data were created in Y via a missing at randommechanism that depends on d9 and d10.
Variables not part of the model under study (i.e., d5, d6, d7, d10) were also included in the missing data model.

Component 4: Parameter values that control aspects of the MICE-algorithm or the tree fitting. The number of iterations, the
number of imputed datasets, and the values of parameters that control aspects of the tree fitting were equal to the ones
used in the simulation with continuous predictor and response variables. They can be found in Section 4.1.
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Table 3
Statistical properties of parameter estimates for model (5.1), containing a double ordinal interaction with large effect size. α7 is the parameter of the
interaction effect.

α Method Bias Cova CIb λ̂c α Method Bias Cova CIb λ̂c

α0 Logreg −0.185 0.90 1.146 0.479 α4 Logreg 0.005 0.96 0.853 0.498
CART −0.040 0.87 0.954 0.296 CART 0.056 0.85 0.706 0.303
Forest-boot −0.084 0.87 0.985 0.325 Forest-boot 0.047 0.86 0.723 0.319
Forest-RI −0.095 0.89 0.983 0.339 Forest-RI 0.114 0.87 0.721 0.343

α1 Logreg 0.266 0.88 1.103 0.430 α5 Logreg 0.015 0.96 0.854 0.500
CART −0.091 0.90 0.963 0.297 CART 0.084 0.82 0.711 0.311
Forest-boot −0.082 0.92 0.989 0.321 Forest-boot 0.067 0.83 0.728 0.328
Forest-RI −0.055 0.94 0.994 0.344 Forest-RI 0.134 0.83 0.721 0.343

α2 Logreg 0.269 0.87 1.096 0.421 α6 Logreg 0.036 0.95 0.838 0.496
CART −0.054 0.88 0.952 0.296 CART 0.126 0.87 0.693 0.299
Forest-boot 0.008 0.87 0.981 0.324 Forest-boot 0.113 0.92 0.711 0.318
Forest-RI −0.013 0.92 0.988 0.347 Forest-RI 0.135 0.91 0.708 0.336

α3 Logreg −0.005 0.95 0.847 0.505 α7 Logreg −0.533 0.80 1.460 0.346
CART −0.102 0.88 0.692 0.294 CART 0.091 0.92 1.411 0.300
Forest-boot −0.085 0.90 0.711 0.319 Forest-boot 0.161 0.90 1.454 0.321
Forest-RI −0.110 0.91 0.711 0.340 Forest-RI −0.075 0.97 1.453 0.350

a Coverage, i.e., the percentage of cases where the value of the estimand is located within the 95% confidence interval around the estimate.
b Width of the 95% confidence interval around the estimate.
c Estimated proportion of the variance attributable to the missing data.

Table 4
Statistical properties of interaction parameter estimates in the context of categorical predictor and response variables.

α Interaction type Method Small effect size Large effect size
Bias Cova CIb λ̂c Bias Cova CIb λ̂c

α7 Double ordinal Logreg −0.211 0.99 1.385 0.336 −0.533 0.80 1.460 0.346
CART −0.016 0.84 1.329 0.289 0.091 0.92 1.411 0.300
Forest-boot −0.028 0.89 1.374 0.325 0.161 0.90 1.454 0.321
Forest-RI −0.083 0.93 1.374 0.342 −0.075 0.97 1.453 0.350

α14 Disordinal–ordinal Logreg −0.218 0.99 1.356 0.336 −0.542 0.77 1.403 0.333
CART −0.138 0.94 1.303 0.295 −0.181 0.86 1.367 0.304
Forest-boot −0.132 0.97 1.345 0.330 −0.181 0.92 1.401 0.327
Forest-RI −0.156 0.97 1.331 0.331 −0.187 0.91 1.397 0.344

α21 Double disordinal Logreg −0.208 0.99 1.308 0.328 −0.546 0.71 1.336 0.330
CART −0.166 0.98 1.264 0.289 −0.313 0.81 1.301 0.298
Forest-boot −0.168 0.99 1.307 0.325 −0.324 0.87 1.333 0.319
Forest-RI −0.168 0.99 1.310 0.338 −0.366 0.86 1.331 0.331

a Coverage, i.e., the percentage of cases where the value of the estimand is located within the 95% confidence interval around the estimate.
b Width of the 95% confidence interval around the estimate.
c Estimated proportion of the variance attributable to the missing data.

Component 5: Outcome measures. The performance of the methods was evaluated over 200 simulations with the same
outcome variables as described in Section 4.1: bias, coverage, width of the confidence interval, and the estimated proportion
of the variance attributable to the missing data (λ̂).

5.2. Results

The results for model (5.1) containing a double ordinal interaction with large effect size are presented in Table 3. The in-
teraction problem is again clearly illustrated. That is, the parameters related to the double ordinal interaction (i.e.,α1, α2, α7)
are seriously biased when the default application of mice (i.e., Logreg) is used for imputation. When recursive partitioning
techniques are used for imputation, these parameter estimates are severely less biased. The smaller biases result in larger
coverages, despite the smaller confidence intervals for recursive partitioning techniques. With regard to the parameters not
part of the interaction effect, biases have become somewhat larger and coverages have become lower as recursive parti-
tioning is used for imputation. Similar patterns are found for the models with a disordinal–ordinal and double disordinal
interaction effect. In essence, results improve for parameters part of the interaction while the results for the remaining pa-
rameters slightly deteriorate. Since these patterns are similar over designs, we will just focus on the statistical properties of
the interaction parameter estimates (i.e., α7, α14, α21) for the remaining designs. These results are presented in Table 4 and
will be examined in more detail concerning the four imputation methods, the effect sizes of the interaction effects and the
interaction types.

First, in general, all four imputationmethods underestimate the interaction effects, but Logreg does this to the greatest ex-
tent. The recursive partitioning methods perform considerably better when it comes to correctly estimating the interaction
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parameters. Besides, it is notable that using recursive partitioning for imputation is generally more efficient than Logreg.
This is indicated by the smaller confidence intervals while coverages are higher. Comparing the three recursive partitioning
methods shows that random forests entail a small amount of extra uncertainty in the imputationmodels compared to CART,
i.e., the confidence intervals are somewhat wider. Hereby the random selection of splitting variables in Forest-RI was not of
added value. Resulting from the wider confidence intervals for random forests, the coverages also increase as this technique
is used for imputation. Lastly, the estimated λ̂ parameters are all around 0.3, which implies that the methods deal with
moderately large fractions of missing information. The values of λ̂ do not diverge much, though the problem of missing data
shows least severe as CART is used for imputation.

With respect to the importance of the interaction effects, none of the recursive partitioning methods seemway off when
these are small. Yet again, the results for the interactions with small effect sizes are generally better (i.e., smaller biases and
higher coverages) than the results for the interactions with larger effect sizes. Lastly, with regard to the interaction types it
turns out that recursive partitioningmethods havemost difficulty with correctly estimating a double disordinal interaction.
Parameter estimates for the interaction effects were least biased when the interaction was double ordinal.

We conclude again with a note on the computational performance of the default application in mice and the recursive
partitioning methods. On an Intel Core i7, it took 1.4 min for Logreg, 3.1 min for CART, 210 min for Forest-boot and 208 min
for the Forest-RI imputation approach to run the simulations for each 3× 2 combination of model and effect size (with 200
simulations). These computation times are stable across the models and effect sizes varied in the simulation study.

6. Discussion

We implemented three recursive partitioning techniques that incorporate interaction effects in the data, as imputation
method in mice: CART, restricted random forests using bootstrapping only and random forests by a combination of
bootstrapping and random input selection. We studied the bias and coverage of parameter estimates after imputation
by these methods. In doing this, we replicated and extended the study of Burgette and Reiter (2010), who examined the
performance of CART in MICE for continuous variables. They conclude that CART as imputation method can result in more
reliable inferences compared with standard applications of MICE based on main-effects generalized linear models. We
obtained similar results for the case studied by Burgette and Reiter, using predictivemeanmatching as standard application.
We also examined the application ofMICE based onBayesian linear regression analyses but thismethodperformedworse. As
extension to the study of Burgette and Reiter, we investigated the use of random forests, data with categorical predictor and
response variables, various effect sizes of interaction effects, the correlation structure of the data and the type of interactions.

Our main result is that, regardless of variables being continuous or categorical, CART preserves interaction effects best
(i.e., not only compared to standard applications but also compared to random forest). Also, larger interaction effects are
more difficult to impute. Furthermore, the quality of parameter estimates deteriorates as the correlation between variables
that interact decreases. Lastly, double ordinal interactions prove to be easiest to preserve automatically. These four results
are discussed in more detail in the following paragraphs.

Both CART and random forests are conservative in the sense that if bias occurs, it is towards zero, but we found CART
to create the least biased parameter estimates. The imperfect imputation models that led to the bias of both techniques
may have emerged from the presence of main effects in the data. That is, recursive partitioning techniques have difficulty
in modelling linear main effects. The main effects are hard to capture because, due to the binary tree model, ‘‘it would take
many fortuitous splits to recreate the structure’’ (Hastie et al., 2001, p. 313).We expect that this problemwill also occur using
other recursive partitioning techniques. A possible solution to this problem has been offered by STIMA (Dusseldorp et al.,
2010), which combines a linear main effects model with recursive partitioning. The difficulty with modelling linear main
effects also explains why in our study the recursive partitioning imputationmethods led to biases that are somewhat higher
for the main effects compared to standard applications of MICE. The higher biases for the interaction effects by random
forests compared to CART may be explained by interactions that are missed in the tree building process due to drawing
bootstrap samples and the (low) number of randomly preselected variables (Strobl et al., 2009). We therefore conclude that
CART preserves interaction effect best, even though random forests did account for somewhat more uncertainty associated
with the missing data. More generally, we conclude that recursive partitioning methods are recommended over standard
applications of MICE if one has presumptions of interaction effects, as the gain in preserving interaction effects outweighs
the somewhat higher biases for the main effects.

Higher effect sizes of interaction effects were found to be associated with larger biases and lower coverages, where the
biases we reported were defined as the absolute difference between the estimand and the estimate. However, the relative
bias (i.e., absolute bias divided by the value of the estimand) turned out to be constant or even somewhat decreasing over
effect sizes. These results can be explained as follows. The imputation methods seem to pull estimates to zero, i.e., they are
conservative. In absolute terms, the impact of this bias is larger as effect sizes are higher. The confidence intervals became
also larger as effect sizes increased, but only to a limited extent. This combination of limited enlargement of the confidence
intervals and biases that increased, led to coverages that were poor as effect sizes were high.

The statistical quality of interaction parameters improved as the correlation between variables that interact increased.
To illustrate, Fig. 4 presents the probability of being selected as first splitting variable per predictor of model (4.3). This
probability is high for predictors that have amutual correlation of r = 0.5 (i.e., x1, x2, x3) comparedwith variables that have
a mutual correlation of r = 0.3 (i.e., x8, x9). The explanation for this finding is that a higher correlation between predictors
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Fig. 4. Relative selection rates for the first split regarding model (4.3), containing an interaction between x8 and x9 with a large effect size. Predictors
x1, x2 and x3 have mutual correlations of r = 0.5, and predictors x8 and x9 have mutual correlations of r = 0.3. Remaining variables are not related to the
response variable. Parameter values for the predictors are equal.

implies a higher correlation between each predictor with the response variable. As a consequence, recursive partitioning
techniques prefer these highly correlated variables for splitting over variables that are less predictive of the response
variable. This also explains why interaction effects between variables that have a low correlation are harder to detect.

With regard to interactions being ordinal or disordinal, we found that a double ordinal interaction is best preserved by the
imputationmethods. This might be due to the double main effect that is part of such an interaction, whichmakes it easier to
detect. In line with the theory it appeared most difficult for recursive partitioning imputation methods to preserve a double
disordinal interaction effect. Nevertheless, specific caution for imputing data with a possible double disordinal interaction is
not in place. Problems were expected to arise in the presence of a perfectly symmetric double disordinal interaction, which
is an unrealistic situation in real data. Beyond that, it appears that in practice the theory that two interaction effects cancel
out their main effect, is not problematic.

With certainty, there is still room for improvement of recursive partitioning as imputationmethod in order for it to work
in each and every situation. We concentrated on the most popular recursive partitioning methods, i.e., CART and random
forests. As a suggestion, one could consider alternative methods like conditional inference trees (a framework in which
tree-structuredmodels are embedded into a theory of conditional inference procedures; Hothorn et al., 2006), CHAID (Kass,
1980), C4.5 (Quinlan, 1993), MARS (a non-parametric regression technique that automatically models nonlinearities and
interactions; Friedman, 1991), GUIDE (a machine learning algorithm for generalized, unbiased, interaction detection and
estimation; Loh, 2002) and STIMA (Dusseldorp et al., 2010). Though we considered various designs, our study is still limited
in terms of results that may not be generalizable due to our particular choices of data generation. As a second suggestion
for future research, we therefore propose an extension of the simulation study by systematically varying the structure of
the data, the missing data pattern (i.e., univariate, multivariate) and the missing data mechanism (i.e., missing at random,
missing not at random). Lastly, a general remark can be made towards our goal to have imputation models that fit to the
data in an automatic fashion: automation of imputation methods gives no license to stop thinking about structures of the
data and missingness.

Beyond the fact that there is still room for improvement, it can be concluded that recursive partitioning techniques are
valuable for imputing datasets containing interaction effects. We have shown that, compared with standard applications,
substantial gains are possible in using recursive partitioning as imputationmethod inmultiple imputation, when interaction
effects are present in the data. The recursive partitioning imputation methods we presented allow, to a greater or lesser
extent, for imputation of missing values while automatically accounting for interaction effects in the data at hand and the
uncertainty associated with the missing data. So far, no imputation methods are available that meet this requirement.

Appendix A. Implementation of random forests in MICE

Algorithm for the implementation of Forest-boot and Forest-RI in MICE. This algorithm can be generalized to random
forests techniques other than Forest-boot and Forest-RI (e.g., random forests based on conditional inference trees; Hothorn
et al., 2006), by adjusting the method used to fit the k trees in step 2b.

Appendix B. Parameter values used in the simulation study

Values of the parameters weights β (Table B.1) and α (Table B.2) to generate the data. The data with continuous predictor
and response variables are generated from the models described in Section 4.1, and the data with categorical predictor and
response variables are generated from themodels in Section 5.1. The values of f 2 are the effect sizes of the interaction terms.
The values of the interaction parameters are in boldface.
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Table B.1
True parameters values from models (4.1)–(4.3).

Correlation r = 1.0 r = 0.5 r = 0.3
f 2 0.020 0.15 0.35 0.02 0.15 0.35 0.02 0.15 0.35

β1 0.34 0.31 0.28 β7 0.34 0.31 0.28 β13 0.34 0.31 0.28
β2 0.34 0.31 0.28 β8 0.34 0.31 0.28 β14 0.34 0.31 0.28
β3 0.34 0.31 0.28 β9 0.34 0.31 0.28 β15 0.34 0.31 0.28
β4 0.34 0.31 0.28 β10 0.34 0.31 0.28 β16 0.34 0.31 0.28
β5 0.34 0.31 0.28 β11 0.34 0.31 0.28 β17 0.34 0.31 0.28
β6 0.11 0.28 0.42 β12 0.13 0.35 0.53 β18 0.13 0.37 0.57

Table B.2
True parameters values from models (5.1)–(5.3).

Type Double ordinal Disordinal–ordinal Double disordinal
Effect size Small High Small High Small High

α1 0.5 0.5 α8 0.7 0.7 α15 0.4 0.4
α2 1 1 α9 0.4 0.5 α16 0.5 0.4
α3 0.4 0.5 α11 0.7 0.7 α17 0.4 0.4
α4 −0.5 −1 α11 −0.2 −0.2 α18 −1.1 −1.3
α5 −1.1 −1 α12 −1.1 −1.1 α19 −0.2 −0.2
α6 −0.5 −0.5 α13 −0.7 −1.1 α20 −0.2 −0.2
α7 0.4 1.1 α14 0.4 1.1 α21 0.4 1.1

Algorithm A.1 Implementation of random forests in MICE
Suppose a datamatrix Y , where Yj is the jth columnof the partially observed variables (ordered to have increasing numbers
ofmissing values somodels are buildwith asmuch information as possible), p is the number of partially observed variables,
Y obs
j is the observed data and Ymis

j is the missing data in the jth column, and Ẏ is the currently imputed data matrix Y .

1. For j = 1, . . . , p, fill in initial starting imputations Ẏ 0
j by random draws from Y obs

j , and define a data matrix Ẏ .
2. For j = 1, . . . , p, replace Ẏ 0

j as follows, yielding one imputed dataset:
(a) Draw k bootstrap samples from Ẏ , restricted to members in Y obs

j
(b)Fit one tree on every bootstrap sample drawn in step 2a, either with (Forest-RI) or without (Forest-boot) selection of

a small group of input variables for finding the best split at each node. This results in k trees, where every tree has
several leaves. Each leaf includes a subset of Y obs

j , which will be called donors.
(c) For members in Ymis

j , determine in which leaf they will end up according to the k trees fitted in step 2b. This results in
k leafs with donors per member of Ymis

j .
(d)For members in Ymis

j , take all donors from the k leafs ended up in step 2c together and randomly select one Y obs value
from the donors. Replace the originally missing values of Ẏ 0

j with these imputation values and append the complete
version of Ẏj to Ẏ prior to incrementing j.

3. Repeat step 2 so as to have performed it l (number of iterations) times.
4. Repeat steps 1–3m times, yielding m imputed sets.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2013.10.025.
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