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Should Regularization Replace Simple Structure
Rotation in Exploratory Factor Analysis?

Florian Scharf and Steffen Nestler
University of Leipzig

Exploratory factor analysis (EFA) is an important tool when the measurement structure of psycho-
logical constructs is uncertain. Typically, factor rotation is applied to obtain interpretable results
resembling a simple structure. However, an overwhelming multitude of rotation techniques is
available ofwhich none is unequivocally superior. Recently, regularization has been suggested as an
alternative to factor rotation. In two simulation studies, we addressed the question if regularized
EFA is a suitable alternative for rotated EFA. We compared their performance in recovering
predefined factor loading patterns with varying amounts of cross-loadings. Elastic net regularized
EFAyielded estimates comparable to rotated EFA. For complex loading patterns, both rotated and
regularized EFA tended to underestimate cross-loadings and inflate factor correlations, but regular-
ized EFA was able to recover loading patterns as long as a subset of items followed a simple
structure.We conclude that regularization is a suitable alternative to factor rotation for psychometric
applications.

Keywords: factor rotation, regularization, penalized maximum likelihood, exploratory factor
analysis, structural equation modelling

Exploratory factor analysis (EFA) is one of the most com-
monly used statistical methods in psychological research.
EFA allows researchers to summarize the observed data
(e.g., item responses) as a function of a few latent variables
(e.g., traits), typically called factors (see, e.g., Mulaik,
2010, for a general introduction). After an initial solution
has been estimated, factor rotation is used in order to
obtain a more interpretable solution. A variety of rotation
techniques have been proposed for this purpose including,
for example, Varimax, Geomin, or Quartimax (see Browne,
2001; Mulaik, 2010, for overviews). However, the multi-
tude of rotation techniques makes it difficult for applied
researchers to choose an appropriate technique for their
application scenario. Furthermore, research found that rota-
tion techniques differ in their ability to uncover a known

population factor structure and that the performance of
a specific rotation technique depends on the population
pattern itself (Asparouhov & Muthén, 2009; Sass &
Schmitt, 2010; Schmitt & Sass, 2011). As the population
factor structure is unknown in practical EFA applications,
the choice of the rotation technique is a purely subjective
step.

Regularized (or sparse) EFA has been suggested as an
alternative to the factor rotation step (e.g., Trendafilov, 2014;
Yamamoto, Hirose, & Nagata, 2017). Instead of rotating factor
loadings, regularized EFA tries to achieve a more interpretable
solution such as a simple structure by penalizing factor loadings
and/or factor correlations directly in the estimation step –
shrinking non-substantial parameters toward zero.
Regularized EFA addresses the subjectivity of the rotation
approach to some extent, because the tuning parameters that
are used for penalization can be determined in a more objective
way, for example, by drawing on information criteria such as
the Bayesian information criterion (BIC; e.g., Hastie,
Tibshirani, & Friedman, 2009; Jacobucci, Grimm, &
McArdle, 2016; James, Witten, Hastie, & Tibshirani, 2013).

Despite the growing body of methodological literature
on regularized EFA, including illustrative examples of the
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potential of regularized EFA as a substitute for factor rota-
tion (Trendafilov, 2014; Yamamoto et al., 2017), applica-
tions of regularized EFA are rare. One reason for this might
be that applied researchers are lacking sufficient informa-
tion to judge the usefulness of regularized EFA for their
specific use case. Previous research focused on direct com-
parisons of either rotation techniques (e.g., Schmitt & Sass,
2011) or regularization methods (e.g., Hirose & Konishi,
2012), but extensive direct comparisons of factor rotation
and regularization across many data situations are not yet
available. The present article aims to fill this gap by com-
paring the performance of different rotation techniques with
different regularization techniques with regard to parameter
estimation. In addition, we investigated whether only the
factor loadings or both factor loadings and factor correla-
tions should be treated as to-be-regularized parameters in
regularized EFA.

In the following, we first describe how the parameters of
the EFA model are conventionally estimated by factor
rotation techniques. Then, we explain how regularized
EFA parameters can be obtained using penalized maximum
likelihood (ML) estimation with a least absolute shrinkage
and selection operator (lasso), ridge, or elastic net (enet)
penalty (e.g., Hastie et al., 2009). Thereafter, we present the
results of two simulation studies comparing the perfor-
mance of factor rotation and regularization in the estima-
tion of factor loadings and factor correlations. In addition,
we investigated the influence of the sparsity of the factor
loading pattern on the recovery of the population
parameters.

FACTOR ROTATION IN EFA

The EFA model describes the p observed variables as
aweighted linear combination ofm factors (e.g.,Mulaik, 2010):

Y ¼ Ληþ � (1)

where Y is the p� n matrix of observed variables measured
from n observations, η is the m� n matrix of factor scores,
Λ is a p� m matrix of factor loadings, and � is a p� n
matrix of error terms. The parameters of the EFA model are
often estimated with a ML approach. Here, estimates are
obtained that minimize the discrepancy between the model-
implied covariance matrix of the variables Σ and their
observed covariance matrix S (Jöreskog, 1969):

FMLðΣ; SÞ ¼ ln Σj j þ trðΣ�1SÞ � ln Sj j � n (2)

It is well known that the EFA model is rotationally inde-
terminate. That is, an infinite set of equally well fitting
factor solutions exists for a given data set that may be
transformed into each other by a rotation matrix H (e.g.,
Mulaik, 2010, p. 276):

Y ¼ νþ ΛHH�1ηþ � (3)

Here, ΛH are the rotated factor loadings and H�1η are the
rotated factor scores. Consequently, researchers have to
‘choose’ a factor solution that describes the observed data
in a convenient (i.e., interpretable) way. This is achieved by
rotating the initial model, that is, computing an optimal
rotation matrix H according to a prespecified criterion.
Most of the common rotation techniques optimize
a simple structure criterion of the factor loadings requiring
that each variable should load highly onto one factor and
should have low cross-loadings onto the other factors
(Browne, 2001; Thurstone, 1935, 1954).

About 50 rotation techniques have been proposed in the
methodological literature (Trendafilov, 2014). The most
apparent distinction can be made between orthogonal rota-
tion techniques (e.g., Varimax; Kaiser, 1958, 1959), which
constrain the factor correlation to zero, and oblique rotation
techniques (e.g., Geomin; Yates, 1987), which allow the
factors to be correlated. Apart from that, rotation techni-
ques differ in the exact criterion that is used to operationa-
lize a simple factor loading pattern (e.g., Browne, 2001),
and hence in their tolerance for cross-loadings (Schmitt &
Sass, 2011). In the following, we will briefly contrast three
common rotation techniques: Varimax rotation, Geomin
rotation, and Facparsim as a member of the general
Crawson-Ferguson (CF) rotation family.

Varimax (Kaiser, 1958, 1959) is one of the most widely
applied rotation techniques (Fabrigar, Wegener,
MacCallum, & Strahan, 1999). It assumes uncorrelated
factors and maximizes the variance of the squared loadings:

f ðΛÞ ¼
Xp
i¼1

λ4ij �
1

p

Xp
i¼1

λ2ij

 !2

(4)

An initial Varimax rotation is an essential part of the popular
oblique Promax criterion (Hendrickson & White, 1964).

The Geomin rotation was explicitly developed in order
to represent more complex loading patterns. It minimizes
the (variable-wise) geometric mean of the squared factor
loadings (Browne, 2001):

f ðΛÞ ¼
Xp
i¼1

Ym
j¼1

ðλ2ij þ �Þ
" #1

m

(5)

Here, � is an additional parameter to ensure that the
rotation criterion is generally differentiable even if one
of the factor loadings is exactly zero for each variable.
Traditionally, � ¼ 0:01 is used but a slightly higher value
of � ¼ 0:5 has been suggested in the literature to better
represent more complex factor structures (Marsh et al.,
2010, 2009; Morin, Marsh, & Nagengast, 2013).
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The CF rotation criterion considers both variable-wise
and factor-wise complexity in the rotation:

f ðΛÞ ¼ ð1� kÞ
Xp
i¼1

Xm
j¼1

Xm
l�j;l¼1

λ2ijλ
2
il

þ k
Xm
j¼1

Xp
i¼1

Xp
l�i;l¼1

λ2ijλ
2
lj (6)

The first and second term in this sum quantify the row
(i.e., variable) and column (i.e., factor) complexity,
respectively, in the factor loading matrix. The weight
k ¼ ½0; 1� determines which complexity receives more
emphasis during factor rotation with higher values indi-
cating more emphasis on factor complexity. Many rota-
tion criteria may be described as special cases of the CF
criterion with different values of k (e.g., Sass &
Schmitt, 2010).

Due to the different simple structure criteria, rotation
techniques differ in their ability to recover population
patterns that differ in their amount of cross-loadings.
More specifically, simulation studies showed that ortho-
gonal rotations of oblique factor patterns yield spurious
cross-loadings even if the population factor loading pat-
tern is a simple structure (Schmitt & Sass, 2011).
Furthermore, oblique rotations tend to yield inflated fac-
tor correlations and underestimated cross-loadings in the
presence of high cross-loadings in the population factor
loading pattern (Asparouhov & Muthén, 2009; Sass &
Schmitt, 2010; Schmitt & Sass, 2011). Thus, factor rota-
tion techniques can achieve a more unique assignment of
variables to factors at the cost of less distinct factors (or
vice versa), and it is desirable to achieve a reasonable
trade-off between factor correlation and cross-loadings.

To summarize, factor rotation is utilized to find a factor
solution that is as interpretable as possible according to
some simplicity criterion. However, applying rotation tech-
niques has two major drawbacks: First, researchers have to
choose among a multitude of rotation techniques that is still
growing (e.g., Beauducel, 2018; Ertel, 2011; Jennrich,
2004, 2006; Yamamoto & Jennrich, 2013). In addition,
some rotation techniques have tuning parameters (e.g., k
and � mentioned above) that also have to be chosen (and
that have profound consequences for parameter
estimation). Second, the performance of a rotation techni-
que in terms of the suitability of the parameter estimates
depends on the true data generating mechanism in the
population, especially on the amount of cross-loadings,
which is unknown in practice. Therefore, alternative
approaches that perform consistently well across a wide
range of factor patterns would be preferable – obviating
the need for such a subjective choice.

REGULARIZED EFA

The rotation problem in EFA can be reconceptualized as
a variable (or model) selection problem in which a set of
indicator variables for each factor needs to be chosen
among all indicators (e.g., Hirose & Konishi, 2012;
Hirose & Yamamoto, 2014). A lot of work in the SEM
literature has been done on efficient model selection via
heuristic search algorithms in the context of model mod-
ification (e.g., Glymour, Madigan, Pregibon, & Smyth,
1997; Marcoulides & Drezner, 2003; Marcoulides,
Drezner, & Schumacker, 1998; Marcoulides & Falk,
2018; Marcoulides & Ing, 2013). Essentially, these
approaches are best subset selection methods that try to
go through the space of possible models as efficiently as
possible but still apply conventional estimators (such
as ML) to estimate the model parameters. The best
model is then selected based, for instance, on the BIC
(Schwarz, 1978). In contrast, regularization strives for
a solution in which as many parameters as possible are
(close to) zero directly during the estimation of the model
with the goal that only few but substantial variables
remain in the final model (Hastie et al., 2009).

A vector of parameters in which most of the entries are
zero is called sparse. With respect to EFA, where the
parameters to be estimated are the factor loadings and
factor correlations, a perfect simple structure of the factor
loadings can be seen as a special case of sparsity, and this is
the reason why regularized EFA has been suggested as an
alternative to factor rotation (Trendafilov, 2014). However,
unlike the simple structure criterion, the sparsity condition
does not refer to a specific pattern of the non-zero estimates
within the set of parameters (e.g., that cross-loadings are
zero). In that sense, a conventional rotated EFA and
a regularized EFA both aim for a simple factor loading
pattern but the latter does not distinguish between factor
and variable complexity (see Hirose & Yamamoto, 2015a;
Yamamoto et al., 2017, for more formal treatments of this
notion). This property may enable regularized EFA to flex-
ibly recover a larger variety of factor loading patterns than
rotated EFA – challenging the predominance of rotation in
typical psychometric applications.

Several variations of regularized EFA have been pro-
posed in the literature (e.g., Arruda & Bentler, 2017; Hirose
& Konishi, 2012; Hirose & Yamamoto, 2014; Huang,
Chen, & Weng, 2017a, 2017b; Jacobucci et al., 2016;
Jung & Lee, 2011; Jung & Takane, 2007; Trendafilov &
Adachi, 2015; Trendafilov, Fontanella, & Adachi, 2017).
Here, we focus on approaches that directly add a penalty
term at the ML-estimation stage with the aim of finding
a sparse measurement model (Hirose & Yamamoto, 2014;
Jacobucci et al., 2016). That is, the parameters of the model
are estimated by minimizing a penalized version of the ML
fit function (Eq. 2):
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FregEFAðΣ; SÞ ¼ FMLðΣ; SÞ þ α � PðθÞ (7)

¼ ln Σj jþtrðΣ�1SÞ� ln Sj j� nþα�PðθÞ (8)

Here, PðθÞ is a penalty function of a vector of model
parameters θ that may, in principle, contain any parameter
of the model, that is, factor loadings or factor correlations.
The tuning parameter α determines the amount of penalty
applied during estimation and needs to be determined in
a separate step. In general, the penalty term will increase as
a function of the number of nonzero parameter estimates so
that the estimation procedure prefers models with many
low or zero parameter estimates. In that respect, rotation
and regularization have similar objectives (see Trendafilov,
2014; Yamamoto et al., 2017, for illustrative examples).

The vector of penalized parameters θ may contain the
factor loadings (i.e., θ ¼ vec ðΛÞ) or both the factor load-
ings and the factor correlations (i.e., θ ¼ ½vec ðΛÞ φ�,
where φ denotes a vector containing all factor
correlations).1 Furthermore, a variety of different penalty
functions have been proposed in the literature including
ridge, lasso, and enet penalties. Both ridge (Hoerl &
Kennard, 1970) and lasso (Tibshirani, 1996) penalties are
based on vector norms of the parameter vectors.
Specifically, ridge uses the sum of the squared parameter
estimates as penalty term, while lasso penalizes the sum of
the absolute values of the parameter estimates:

Pridge ¼kθk2 ¼
X
i

θ2i (9)

Plasso ¼kθk1 ¼
X
i

θij j (10)

Here, k � k denotes the respective norm operator and the sum
is taken across all parameters contained in θ. Both penalties
result in a shrinkage of the parameters toward zero but only
lasso can shrink the parameter estimates to exactly zero (i.e.,
for α ! 1), allowing for variable selection (Hastie et al.,
2009). Importantly, the variable selection property of regular-
ization also removes the rotational indeterminacy so that
regularized EFA solutions are unique (except for reordering
of factors and sign switches; Choi, Oehlert, & Zou, 2010).
Another consequence of the penalty term is that regularized
EFA solutions tend to fit the data slightly worse than rotated
EFA solutions (e.g., Jin, Moustaki, & Yang-Wallentin, 2018;
Trendafilov et al., 2017).

The ability to conduct variable selection is an advantage
of lasso over ridge penalization. However, lasso regression
performs worse than ridge if the number of parameters
exceeds the number of observations by far (Zou & Hastie,
2005). For these situations, the enet penalty has been pro-
posed which applies both a lasso and a ridge penalty. That
is, enet considers both the sum of the absolute values of the
parameter estimates and the sum of the squared parameter
estimates:

Penet ¼ ð1� βÞ kθk1 þ β kθk2 (11)

Enet can be seen as a generalization of lasso and ridge. It
includes an additional weight parameter β that determines
which of the penalties receives more weight. Notably, when
β ¼ 1 or β ¼ 0, enet is equivalent to ridge and lasso,
respectively. When 0< β< 1, continuously less parameters
are shrunken to exactly zero the more β approaches 1
(Hastie et al., 2009).

For the sake of completeness, it should be mentioned
that further penalty functions have been proposed with the
explicit goal of achieving sparser solutions than factor
rotation (Fan & Li, 2001; Hirose, 2016; Hirose &
Yamamoto, 2015b; Zhang, 2010). This is especially impor-
tant for data sets with a very large number of variables
(relative to the sample size) such as genome data (e.g.,
Carvalho et al., 2008), or fMRI data (e.g., Hirose, 2016).
However, as outlined in the context of factor rotation,
simpler (or sparser) solutions are typically accompanied
by inflated factor correlations for psychometric data sets.
Considering even sparser solutions would rather aggravate
the outlined problems. Therefore, in the present paper, we
focus on penalties that do not specifically aim for sparser
solutions than factor rotation (i.e., ridge, lasso, and enet).

Apart from the choice of the penalty function, the tuning
parameter α heavily influences the estimates of regularized
EFA. In general, the parameter estimates and the proportion
of nonzero parameters decrease as α increases. In that
sense, regularization may be seen as a continuous and
objective approach to achieve a simple (or sparse) solution
as the tuning parameter is determined utilizing an objective
criterion. Typically, the model is estimated over a range of
possible values for α, and the set of parameters is chosen
that yields the best cross-validated fit as indicated by the
root mean squared error or some information criterion
(Hastie et al., 2009) such as the BIC. For regularized factor
analysis models, the BIC performs well in finding a penalty
weight that results in reasonable parameter estimates
(Hirose & Yamamoto, 2014; Jacobucci et al., 2016).

In summary, regularized EFA aims for a sparse factor
loading matrix with as many zero-elements as possible but
without assuming a specific form of simple structure (e.g.,
that each variable should have at least one zero loading).
This makes regularization a potential alternative to factor

1 For the sake of completeness, it should be noted that θ must not contain
factor loadings and variable residuals at the same time because their strong
relationship (the higher the factor loadings, the smaller the variable residuals)
would lead to severe estimation problems (Jacobucci et al., 2016).
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rotation also for psychometric applications (see also
Trendafilov, 2014). Importantly, it should not be expected
that regularized EFA always performs better than rotated
EFA - although there may be conditions under which reg-
ularized EFA is generally superior in terms of parameter
estimation. Rather, regularized EFA may provide a better
compromise between the ability to uncover simple structure
when it exists with the ability to offer reasonably interpre-
table results when this is not the case. In that sense, reg-
ularized EFA could already be considered a suitable
alternative for factor rotation if its estimates are not sub-
stantially worse than the best rotated EFA for a given factor
loading pattern. Previous research convincingly demon-
strated that regularized EFA achieves interpretable solu-
tions for some specific applications (e.g., genome data or
popular standard examples for EFA). Extending these stu-
dies, we investigated if this observation can be generalized
over a wider range of populations inspired by typical psy-
chometric data sets in which we systematically varied the
size of the cross-loadings.

THE PRESENT STUDY

Extensive empirical comparisons of factor rotation techniques
for typical psychometric data sets are available (Asparouhov
& Muthén, 2009; Sass & Schmitt, 2010; Schmitt & Sass,
2011) and a number of studies have compared different pen-
alty functions in the context of both exploratory factor analy-
sis and regression (Fan & Li, 2001; Hirose, 2016, Hirose &
Yamamoto, 2014, 2015b; Huang et al., 2017a; Zhang, 2010).
Occasionally, rotation techniques have been included in simu-
lation studies on regularization but these comparisons were
limited to one specific rotation technique per study and con-
sidered only a small variety of factor loading patterns (Hirose
& Yamamoto, 2015b; Ning & Georgiou, 2011; Trendafilov &
Adachi, 2015, 2015).

Hence, more direct and extensive comparisons of factor
rotation and regularization on the same data set are neces-
sary to judge the usefulness of regularization for typical
psychometric applications. Closing this gap, we report the
results of two simulation studies comparing the perfor-
mance of the described regularization methods with factor
rotation. In the first simulation, we compared the asympto-
tic properties of factor rotation and regularization for large
samples, and, in the second study, we investigated whether
the results from the large samples also apply to samples
sizes that are more realistic in psychological research.

STUDY 1: ASYMPTOTIC PERFORMANCE

In this study, we compared the performance of factor rota-
tion and regularization for large samples. We based our

comparison on factor loading patterns for which the perfor-
mance of common factor rotation techniques is known. In
addition, we investigated the performance of regularization
and factor rotation on extended factor loading patterns with
more items and varying degrees of sparsity. We focused on
oblique CF-Varimax rotated EFA due to its popularity, and
on Geomin and Facparsim rotated EFAs as comparison
techniques because they performed best for complex load-
ing patterns in previous simulations (Asparouhov &
Muthén, 2009; Schmitt & Sass, 2011). We estimated reg-
ularized EFAs with ridge, lasso, and enet penalties. We
either penalized the factor loadings only or both the factor
loadings and the inter-factor correlations.

As outlined earlier, the success of factor rotation
depends on the degree to which the population factor load-
ings follow a simple structure. Regarding the performance
of regularization, it is an important property, especially of
lasso penalties, that the performance of the regularization
depends on the degree to which the true model is actually
sparse, (Donoho, 2006; Donoho & Stodden, 2006). Only if
a sufficient degree of sparsity holds in the population,
regularization is likely to recover the correct factor loading
pattern. In the present context, the factor loading patterns
are sparser the closer they approximate a perfect simple
structure. Therefore, we expected that regularization
behaves similarly as factor rotation in case of
a population pattern that conforms to a simple structure.
For more complex factor loading patterns, the cross-loading
estimates are shrunken toward zero at the cost of inflated
factor correlations. We expected that this effect is reduced
if the penalty also considers the inter-factor correlations. In
this case, inflated factor correlations would result in
a higher penalty term, which in turn should allow the
estimation procedure to aim for a better compromise
between minimal cross-loadings and minimal factor
correlations.

Methods

Simulation model

We simulated factor loading patterns of varying com-
plexity with 3 factors and 18 (basic conditions) or 36
variables (extended conditions). For the sake of compar-
ability, we adapted the simulation setup that was used in
Schmitt and Sass (2011, Table 1) comprising 18 variables
that follow a perfect simple pattern, an approximate
simple pattern with small cross-loadings (< 0.20) or
a complex pattern with substantial cross-loadings of up
to 0.40 (standardized loadings). The standardized main
loadings varied between 0.63 and 0.75 and the factors
were standardized (variance of 1) and substantially cor-
related (0.40). The residual covariance matrix was
a diagonal matrix, that is, the residuals were
uncorrelated.
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In addition to these basic conditions, we also explored
the behavior of factor rotation and regularization for 5
extended factor loading patterns with 36 variables. These
patterns were constructed by concatenating different com-
binations of the basic patterns (Table 2). These extended
conditions enabled us to investigate the influence of the
number of items and the degree of sparsity on the perfor-
mance of factor rotation an regularization. For instance, in
the condition ‘Extended Simple 1’ composed of a Perfect
Simple pattern and an Approximate Simple pattern, that is,
the variables 1 to 18 loaded on the 3 factors with 6 main
loadings (0.75) per factor and otherwise zero-loadings
(Table 1, left-most pattern), and the variables 19 to 36
loaded on the 3 factors with small cross-loadings (Table
1, middle pattern). In this pattern, both factor and variable
complexity are higher than in the basic Perfect Simple

pattern but the sparsity is preserved to some extent due to
the zero cross-loadings of the first 18 variables. Hence, this
condition is optimally suited to investigate differential
behavior of rotated and regularized EFA.

Finally, in order to exclude that differences between
basic and extended conditions may be attributed to the
increased number of variables, we included two conditions
(Extended Simple 2, Extended Complex 3) that differed to
the respective basic condition only in the number of
variables.

Procedure

All simulations and analyses were conducted in R
(Version 3.4.4, R Core Team, 2018). All scripts necessary
to reproduce the simulations and analyses are available
from the Open Science Framework. For each factor loading
pattern, we derived the implied covariance matrix of the
variables from the common factor model (e.g., Mulaik,
2010, p. 138). In order to investigate the asymptotic beha-
vior of the discussed approaches, we drew large random
samples of N ¼ 10000 participants from a continuous mul-
tivariate normal distribution using the package mvtnorm
(Genz et al., 2017).

For each condition, the respective data set was subjected
to rotated ML-EFAs and regularized EFAs, extracting three
factors. ML-EFA was conducted as implemented in the
package psych (Version 1.7.5; Revelle, 2016) and rotated
using oblique CF-Varimax, oblique Geomin (� ¼ 0:01 or

TABLE 1
Simulated Factor Loading Patterns (Standardized) in the Replicated Conditions

Perfect Simple Pattern Approximate Simple Pattern Complex Pattern

Variable F1 F2 F3 F1 F2 F3 F1 F2 F3

1 0.75 0.00 0.00 0.70 0.11 0.14 0.67 0.22 0.13
2 0.75 0.00 0.00 0.70 0.17 0.05 0.68 0.09 0.23
3 0.75 0.00 0.00 0.68 0.16 0.16 0.68 0.27 0.05
4 0.75 0.00 0.00 0.70 0.05 0.17 0.65 0.39 0.09
5 0.75 0.00 0.00 0.72 0.08 0.08 0.64 0.13 0.39
6 0.75 0.00 0.00 0.70 0.11 0.11 0.67 0.18 0.18
7 0.00 0.75 0.00 0.11 0.69 0.17 0.05 0.68 0.27
8 0.00 0.75 0.00 0.05 0.72 0.08 0.25 0.63 0.38
9 0.00 0.75 0.00 0.05 0.72 0.08 0.38 0.63 0.21
10 0.00 0.75 0.00 0.16 0.68 0.16 0.09 0.69 0.18
11 0.00 0.75 0.00 0.08 0.71 0.11 0.05 0.73 0.05
12 0.00 0.75 0.00 0.05 0.71 0.14 0.27 0.67 0.13
13 0.00 0.00 0.75 0.08 0.14 0.70 0.04 0.40 0.66
14 0.00 0.00 0.75 0.14 0.14 0.69 0.38 0.25 0.63
15 0.00 0.00 0.75 0.14 0.11 0.70 0.26 0.18 0.66
16 0.00 0.00 0.75 0.11 0.05 0.71 0.14 0.09 0.70
17 0.00 0.00 0.75 0.16 0.14 0.69 0.22 0.22 0.66
18 0.00 0.00 0.75 0.08 0.05 0.72 0.18 0.09 0.69

Note. The factor correlations were .40 among all factors. These simulation parameters were adapted from Schmitt and Sass (2011; where the same
patterns are used but unstandardized loadings are presented). The factor loadings were standardized with respect to the total variable variances (Muthén,
2004, Appendix 3). F � = Factor.

TABLE 2
Simulated Factor Loading Patterns in the Extended Conditions

Condition Loading Pattern 1 Loading Pattern 2

Extended Simple 1 Approximate Simple Perfect Simple
Extended Simple 2 Approximate Simple Approximate Simple
Extended Complex 1 Complex Perfect Simple
Extended Complex 2 Complex Approximate Simple
Extended Complex 3 Complex Complex

Note. All extended patterns had 36 variables. The basic patterns can be
found in Table 1.
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0:5), or Facparsim rotations from the GPArotation package
GPArotation (Bernaards & Jennrich, 2005). Regularized
EFA was conducted using the package regSEM, a general
package that estimates regularized structural equation mod-
els (regSEMs) allowing the user to select which parameters
of the model should be penalized (Jacobucci, 2017). In
order to estimate a regularized EFA, we specified three
measurement models but no structural model. Each variable
was allowed to load on each factor, the factor variances
were fixed to 1, and all factor correlations were freely
estimated. Both rotated and regularized EFA were con-
ducted on z-standardized data.

We compared the performance of ridge, lasso, and enet
penalty on either the factor loadings alone (RidgeΛ, LassoΛ,
EnetΛ) or the factor loadings and factor correlations
(RidgeΛ;Φ, LassoΛ;Φ, EnetΛ;Φ). The tuning parameters α
and β (for enet, Eq. 11) were automatically chosen so that
they minimized the BIC over the respective sample
(Jacobucci et al., 2016). For α, a grid of 100 values starting
from α ¼ 0:001 with a step size of 10�5 was used. For all
models, we ensured that the final parameter estimate was
not at the boundary of the grid (indicating that the para-
meter space should be enhanced). For β, we tested values
between 0.05 and 0.95 with a step size of 0.05.

Dependent measures

The standardized root mean residual (SRMR) was cal-
culated as measure of fit between the model-implied and
the observed correlation matrices following the procedure
described, for instance, by Asparouhov and Muthén (2018,
Section 2.2). Before calculating the dependent measures
describing the recovery of the population parameters, fac-
tors were inverted if the sum of their loadings was negative
(e.g., Asparouhov & Muthén, 2009, Appendix D) and fac-
tor alignment was ensured by reordering the factors accord-
ing to their highest Tucker congruency with the respective
factors in the population loading pattern (e.g., Lorenzo-
Seva & Ten Berge, 2006). The average congruency across
all three factors also served as measure of similarity
between the estimated and the population loadings. In addi-
tion, the average bias (across all factors and variables) was
calculated separately for main loadings, cross-loadings, and
the inter-factor correlations.

To avoid misunderstandings, it should be reiterated that
due to the rotational indeterminacy of the EFA model an
infinite set of factor loadings and factor correlations has the
same fit for a given correlation matrix. Hence, the concept
of parameter bias does not apply in the same manner to the
EFA model as to other models (e.g., linear regression).
Following conventions of previous studies (Asparouhov &
Muthén, 2009; Sass & Schmitt, 2010; Schmitt & Sass,
2011), we define bias as the deviation of the estimated
parameters from the data generating parameters. The main
purpose of the reported bias measures is to summarize the

estimated factor loading patterns in an efficient way, and
they should not be understood as deviations from a ground
truth.

Results

The main results of this simulation are summarized in Table 3.
The model fit as indicated by the SRMR was nearly perfect
across all methods but slightly worse for lasso and enet
regularized EFA than for rotated or ridge regularized EFA.
The estimated factor loadings and factor correlations for each
condition are available from the OSF. Except for ridge pena-
lized regularized EFAs, the congruencies and biases of the
main loadings indicated that all investigated methods recov-
ered the general factor pattern sufficiently. However, we
observed strong differences between the methods with respect
to the biases in the cross-loadings and factor correlations.
Notably, across all conditions, methods, and factors, the bias
in the cross-loadings and the bias in the factor correlations
were strongly correlated, rspearman ¼ � 0:98, indicating that
the bias in the factor correlation reliably increased the more
the cross-loadings were underestimated.

Basic conditions

Geomin ð� ¼ 0:01Þ rotation performed very well for
conditions with simple structure in the population, yielding
unbiased estimates of main loadings, cross-loadings and
factor correlations. However, in the presence of substantial
cross-loadings, Geomin ð� ¼ 0:01Þ underestimated the
cross-loadings and overestimated both main-loadings and
factor correlations. This pattern was more pronounced the
more complex the factor pattern was (Approximate Simple
vs. Complex condition). The alternative tuning parameter in
Geomin ð� ¼ 0:5Þ had profound influences on the perfor-
mance of the Geomin rotation, resulting in much weaker
biases for Approximate Simple and Complex patterns but
performing worse for Simple patterns where it introduced
spurious cross-loadings and underestimated factor correla-
tions. A similar trend as for Geomin ð� ¼ 0:5Þ was
observed for Facparsim and CF-Varimax rotations, but
both were slightly less biased for Approximate Simple
and Complex factor patterns and more biased for Perfect
Simple patterns.

Lasso and enet regularization estimates (see Table A1
for an overview of the enet β weights) were very similar to
Geomin estimates. They perfectly recovered the Simple
factor loading pattern, and resulted in underestimated cross-
loadings and inflated factor correlations for Approximate
Simple and Complex patterns. Notably, lasso and enet were
less biased compared to Geomin ð� ¼ 0:01Þ but more
biased than Geomin ð� ¼ 0:5Þ or Facparsim in the presence
of cross-loadings. Ridge penalized EFAs behaved notably
different yielding more biased estimates than all other
tested methods for Perfect and Approximate Simple
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TABLE 3
Simulation Results for All Dependent Measures as a Function of Estimation Method and Simulation Condition in Study 1

Condition

Basic Extended

Method Measure Perfect Simple Approximate Simple Complex Simple 1 Simple 2 Complex 1 Complex 2 Complex 3

Geomin ð� ¼ 0:01Þ SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 1.00 0.98 0.98 1.00 0.98 1.00 0.98 0.98
Bias main loadings −0.00 0.08 0.07 0.03 0.09 0.03 0.07 0.07
Bias cross-loadings 0.01 −0.09 −0.10 −0.04 −0.09 −0.04 −0.09 −0.10
Bias factor correlation −0.02 0.24 0.27 0.10 0.24 0.12 0.25 0.27

Geomin ð� ¼ 0:5Þ SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99
Bias main loadings −0.03 0.00 0.02 −0.01 0.01 −0.00 0.01 0.02
Bias cross-loadings 0.06 −0.01 −0.04 0.02 −0.01 0.00 −0.03 −0.04
Bias factor correlation −0.17 0.02 0.14 −0.07 0.02 −0.01 0.08 0.13

Facparsim SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bias main loadings −0.03 −0.00 0.01 −0.02 −0.00 −0.01 0.00 0.01
Bias cross-loadings 0.07 0.01 −0.03 0.04 0.01 0.02 −0.01 −0.03
Bias factor correlation −0.20 −0.03 0.09 −0.12 −0.03 −0.06 0.02 0.08

CF-Varimax SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bias main loadings −0.03 0.00 0.01 −0.02 −0.00 −0.01 0.01 0.01
Bias cross-loadings 0.06 −0.00 −0.04 0.04 0.01 0.02 −0.01 −0.03
Bias factor correlation −0.18 −0.00 0.11 −0.11 −0.02 −0.05 0.04 0.09

RidgeΛ SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.94 0.90 0.99 0.83 0.84 0.87 0.89 0.97
Bias main loadings −0.07 −0.09 −0.01 −0.15 −0.13 −0.11 −0.09 −0.02
Bias cross-loadings 0.08 0.06 −0.01 0.10 0.08 0.07 0.04 −0.01
Bias factor correlation −0.21 −0.04 0.07 −0.12 −0.04 −0.07 0.01 0.07

RidgeΛ;Φ SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.94 0.90 0.99 0.83 0.85 0.87 0.90 0.97
Bias main loadings −0.07 −0.09 −0.02 −0.15 −0.13 −0.11 −0.09 −0.02
Bias cross-loadings 0.10 0.07 0.01 0.11 0.09 0.08 0.05 −0.00
Bias factor correlation −0.23 −0.10 0.01 −0.15 −0.07 −0.09 −0.02 0.04

LassoΛ SRMR 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.98
Bias main loadings −0.00 0.05 0.04 0.00 0.05 −0.00 0.04 0.04
Bias cross-loadings 0.00 −0.07 −0.07 −0.00 −0.07 −0.01 −0.07 −0.08
Bias factor correlation −0.02 0.18 0.22 0.01 0.18 0.01 0.19 0.22

LassoΛ;Φ SRMR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
Bias main loadings −0.01 0.03 0.03 −0.00 0.04 −0.00 0.03 0.03
Bias cross-loadings 0.01 −0.05 −0.06 −0.00 −0.06 −0.00 −0.06 −0.07
Bias factor correlation −0.02 0.13 0.19 0.01 0.17 -−0.00 0.16 0.20

EnetΛ SRMR 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
Bias main loadings −0.00 0.05 0.03 0.00 0.05 0.00 0.04 0.04
Bias cross-loadings 0.00 −0.07 −0.07 −0.00 −0.06 −0.00 −0.07 −0.07
Bias factor correlation −0.01 0.18 0.19 0.01 0.17 0.01 0.20 0.21

EnetΛ;Φ SRMR 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
Bias main loadings −0.01 0.03 0.02 −0.00 0.03 −0.00 0.03 0.03
Bias cross-loadings 0.01 −0.05 −0.06 −0.00 −0.05 −0.00 −0.05 −0.07
Bias factor correlation −0.02 0.13 0.17 0.00 0.14 0.00 0.14 0.19

Note. The index symbols indicate which parameters were penalized with Λ = Factor loading matrix, and Φ = Factor correlation matrix.
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patterns. Complex factor patterns, however, were almost
perfectly recovered by ridge regularization, especially
when the factor correlations were included in the penalty
term (RidgeΛ;Φ). Overall, the factor correlations tended to
be less inflated for Complex factor patterns when they were
included in the penalty term. However, the differences
between regularization of only the factor loadings or factor
loadings and factor correlations were rather small – except
for the RidgeΛ;Φ.

Extended conditions

In general, we observed similar trends in the extended con-
ditions, that is, the higher the cross-loadings of a respective
pattern, the more difficult it was for the majority of the inves-
tigated methods to recover the population pattern. Especially,
Geomin ð� ¼ 0:01Þ rotation yielded severely biased estimates
in all extended conditions. As in the basic conditions, cross-
loadings were underestimated and factor correlations overesti-
mated, and this pattern was more pronounced the higher the
cross-loadings. Notably, we observed that even a set of addi-
tional items with perfect simple structure (Extended Simple 1,
Extended Complex 1) did not reduce the biases sufficiently for
Geomin ð� ¼ 0:01Þ. Geomin ð� ¼ 0:5Þ and Facparsim were
clearly less biased in the presence of cross-loadings but – as in
the basic conditions – suffered from spurious cross-loadings in
the simpler conditions (Extended Simple 1).

Unlike all investigated rotation techniques, lasso and enet
penalties recovered the factor loading patterns in the extended
conditions perfectly if the additional variables followed
a perfect simple structure (Extended Simple 1, Extended
Complex 1). In all other extended conditions, lasso and enet
yielded similar estimates as in the basic Complex condition,
that is, cross-loadings and factor correlations were biased to
a similar degree. In contrast to enet and lasso, ridge penalties
resulted in fairly distorted estimates in the extended conditions.
Remarkably, the ridge penalty additionally distorted the main
loadings by a substantial amount.2

Discussion

In the first simulation study, we compared the asymptotic
performances of regularized EFAs and traditional rotated
EFAs. For factor rotation, we replicated previous simula-
tion results indicating that the performance of factor rota-
tion depends on the combination of factor rotation
technique, rotation parameter (here: �) and population fac-
tor loading pattern. In line with previous notions (Morin
et al., 2013), a modified Geomin ð� ¼ 0:5Þ criterion and
Facparsim rotation performed especially well in conditions

with moderate to high variable complexity but performed
poorly in conditions with simple structure. This was also
the case for oblique CF-Varimax rotation. The performance
of regularized EFA depended largely on the choice of the
penalty function: Lasso and enet recovered the population
pattern if it contained a sufficient amount of zero-loadings
and otherwise yielded similar estimates as factor rotation.
Overall ridge penalties were less successful than lasso and
enet. While ridge penalties were superior in some selected
conditions, they resulted in severe distortions in some other
conditions.

In sum, the advantages of ridge for complex loading
patterns were – by far – outweighed by the distortions in
other conditions and the inability to recover simple struc-
ture in the population. Enet and lasso, however, recovered
simple structure where it existed and were able to handle
the extended conditions in which additional simple struc-
ture items were appended. These results are in line with
previous studies showing that lasso (but not ridge) asymp-
totically selects the correct subset of variables (here, items
as indicators of the factors) if the sparsity assumption
holds, that is, if a sufficient proportion of the parameters
to be estimated is zero in the population (Donoho, 2006;
Donoho & Stodden, 2006). Put simply, lasso and enet strive
for the sparsest parameter matrix and do not distinguish
between factor and variable complexity – which enables
them to recover the extended factor loading patterns in
which there was high variability with respect to variable
complexity. Across all conditions, an enet penalty on factor
loadings and factor correlations showed slightly better
performance than a simple lasso penalty, indicating that it
combined the strengths of lasso and ridge to some extent.

With respect to the question if regularization is a suitable
alternative to factor rotation, the present results are promising
because, even in the conditions where the sparsity assumption
was violated, enet was able to match up with factor rotation
techniques – outperforming traditional Geomin ð� ¼ 0:01Þ
rotation in every single of the tested conditions. Compared to
the modified Geomin ð� ¼ 0:5Þ and Facparsim rotations, enet
performed worse for patterns with moderate cross-loadings
(Approximate Simple) and comparably for patterns with high
cross-loadings (Complex). However, it should be considered
that both rotations achieved their partial superiority (similarly
to ridge regularization) at the cost of an inability to recover the
loadings of simple structure factor patterns. In practice (i.e.,
without a known ground truth), an informed choice of the
rotation criterion is not possible. From that perspective, enet
regularized EFA has reasonable all-round properties without
the necessity of additional subjective choices.

Although these results were convincing in favor of reg-
ularization, it should be acknowledged that they were
obtained from unrealistically large samples. This is espe-
cially relevant for regularized EFA because the penalty is
considered directly in the estimation step, and estimation

2 Some readers may wonder if the ridge estimates were simply over-
shrunken, explaining the low congruencies. This was not the case as
indicated by low Pearson correlations between the ridge estimates and
the population pattern (0:65<rPearson<0:9).
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performance largely depends on sample size. In order to
conclude that regularization is a suitable alternative to
factor rotation, it needs to be established whether these
results also hold for more practically common samples
sizes. Apart from that, an open question is how factor
rotation and regularization compare with respect to the
stability (i.e., standard errors) of the parameter estimates.
We addressed these questions in the second simulation
study.

STUDY 2: SMALL-SAMPLE PERFORMANCE

In this simulation, we compared the performances of factor
rotation and regularization for more realistic sample sizes
(N ¼ 100,N ¼ 200). In order to achieve a feasible simulation
time, we focused on the basic conditions from Schmitt and
Sass (2011) and the extended conditions with partial simple
structure. These conditions were chosen in order to investigate
if the performance advantages of regularized EFA from Study
1 are preserved in realistic samples. In addition, we only used
the two most successful regularization methods (EnetΛ &
EnetΛ;Φ) from Study 1. These were compared with both ver-
sions of the Geomin rotation and CF-Varimax rotation. We
evaluated the average recovery of the factor loading pattern
and their empirical standard errors across samples.

Methods

Simulation model

The same simulation model was used as in the first
simulation, but we reduced the number of conditions to
keep the simulation feasible. Specifically, we included
only the basic conditions and the extended conditions
with partial simple structure (i.e., Extended Simple 1 and
Extended Complex 1; Table 2).

Procedure

The procedure in Study 2 differed from Study 1 in two
aspects: First, instead of simulating one large sample, we drew
Nrep ¼ 500 random samples from a multivariate normal dis-
tribution with either N ¼ 100 or N ¼ 200 observations per
sample. Second, we only applied Geomin (� ¼ 0:01 or 0:5)
and CF-Varimax rotated ML-EFA and enet penalized regular-
ized EFA. For the penalty weight α, a grid of 10 values starting
from α ¼ 0:001 with a step size of 10�4 was used. For the enet
weight β, we tested values between 0 and 1 with a step size of
0.1, that is, enet was allowed to result in pure lasso or ridge
penalties if this optimized the sample BIC.

Dependent measures

For each sample, sign and order indeterminacies of EFA
estimates were taken into account and the same dependent

measures as in Study 1 were calculated. We report means
and standard deviations across all samples for all measures.

Results

The main results of the simulation are summarized in Table 4.
The average estimated factor loadings and factor correlations
for each condition are available from the OSF. ML-EFA con-
verged normally in all samples. Regularized EFA converged
normally in all but 2 samples with N ¼ 100 in which EnetΛ
penalized solutions were improper (factor correlations > 1). For
these samples, the solution with the tuning parameters (α; β)
entered the results that yielded the next best BIC.

Overall, the model-implied covariance matrices fit the
observed covariance matrices of the data very well as indicated
by the SRMR. The fit was slightly worse for smaller samples
and for regularized EFA compared to rotated EFA. The con-
gruencies and biases of the main loadings indicated that all
investigated methods recovered the general factor pattern suffi-
ciently. Factor recovery and stability were marginally better for
N ¼ 200 than for N ¼ 100. For the factor loadings, the stabi-
lity of the estimates did not differ substantially between rotated
and regularized solutions. For the factor correlations,
Geomin ð� ¼ 0:5Þ and CF-Varimax yielded smaller standard
errors than the other methods. Notably, unlike in Study 1, none
of the tested methods was able to perfectly recover the Perfect
Simple pattern but rather yielded underestimated factor correla-
tions and spurious cross-loadings. Across all conditions and
methods, the biases of factor correlations and cross-loadings
were almost perfectly correlated, rspearman ¼ �0:98 .

Both Geomin and CF-Varimax rotations resulted in under-
estimated cross-loadings and inflated cross-loadings for com-
plex factor loading patterns. As in Study 1,Geomin ð� ¼ 0:5Þ
and CF-Varimax perfectly recovered the Approximate Simple
pattern whereas Geomin ð� ¼ 0:01Þ yielded similar (but
slightly weaker) distortions as in the Complex condition.
The enet regularization behaved very similar to the Geomin
rotations. The inclusion of the factor correlation in the penalty
term was more influential than in Study 1. Specifically,
EnetΛ;Φ like Geomin ð� ¼ 0:5Þ yielded less distorted esti-
mates than EnetΛ in the presence of cross-loadings
(Approximate Simple and Complex) but performed worse
for Perfect Simple patterns. In the extended conditions, reg-
ularized EFA was superior to rotated EFA as indicated by
(nearly) unbiased estimates (especially for the factor correla-
tions). Altogether, the performance of factor rotation and
regularization were very similar with respect to both accuracy
and stability of the factor solutions.

Discussion

In this simulation, we investigated whether regularization
yields comparable results as factor rotation for realistic sam-
ple sizes. Overall, the results of Study 1 generalized quite well

10 SCHARF AND NESTLER



to the small sample case and all investigated methods recov-
ered the factor loading pattern with reasonable accuracy
(Tucker’s congruencies > 0.95; Lorenzo-Seva & Ten Berge,
2006) and yielded reasonable fit (SRMR < 0.05; Bentler &

Yuan, 1999). In contrast to Study 1, none of the investigated
methods was able to recover Perfect Simple patterns without
biases. This was almost negligible forGeomin ð� ¼ 0:01Þ but
all other methods underestimated the factor correlations to

TABLE 4
Simulation Results for All Dependent Measures as a Function of Estimation Method and Simulation Condition in Study 2

N Method Measure Perfect Simple Approximate Simple Complex Extended Simple 1 Extended Complex 1

100 Geomin ð� ¼ 0:01Þ SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.99 (0.01) 0.97 (0.01) 0.96 (0.04) 0.98 (0.00) 0.98 (0.00)
Bias main loadings −0.01 (0.02) 0.05 (0.02) 0.05 (0.05) −0.01 (0.02) 0.03 (0.01)
Bias cross-loadings 0.02 (0.01) −0.07 (0.01) −0.08 (0.03) −0.01 (0.01) −0.04 (0.01)
Bias factor correlation −0.06 (0.07) 0.17 (0.08) 0.21 (0.13) 0.07 (0.07) 0.10 (0.05)

Geomin ð� ¼ 0:5Þ SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.01) 0.99 (0.01) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.03 (0.02) 0.00 (0.02) 0.02 (0.02) 0.01 (0.02) −0.00 (0.01)
Bias cross-loadings 0.06 (0.01) −0.00 (0.01) −0.04 (0.01) 0.01 (0.01) 0.00 (0.01)
Bias factor correlation −0.17 (0.05) 0.00 (0.06) 0.12 (0.05) −0.08 (0.05) −0.03 (0.04)

CF-Varimax SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.01) 0.99 (0.01) 0.99 (0.00) 0.98 (0.00) 0.99 (0.00)
Bias main loadings −0.03 (0.02) −0.00 (0.02) 0.01 (0.02) 0.02 (0.02) −0.01 (0.01)
Bias cross-loadings 0.06 (0.01) 0.00 (0.01) −0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
Bias factor correlation −0.18 (0.05) −0.02 (0.06) 0.10 (0.05) −0.11 (0.05) −0.06 (0.04)

EnetΛ SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.01) 0.98 (0.01) 0.97 (0.01) 0.99 (0.00) 0.99 (0.01)
Bias main loadings −0.03 (0.02) 0.02 (0.02) 0.03 (0.02) −0.00 (0.02) −0.00 (0.01)
Bias cross-loadings 0.04 (0.01) −0.04 (0.02) −0.07 (0.02) −0.00 (0.01) −0.01 (0.01)
Bias factor correlation −0.11 (0.07) 0.10 (0.08) 0.19 (0.07) −0.01 (0.08) 0.01 (0.06)

EnetΛ;Φ SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.02) 0.97 (0.03) 0.98 (0.02) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.03 (0.03) −0.00 (0.03) 0.01 (0.02) −0.00 (0.02) −0.01 (0.01)
Bias cross-loadings 0.05 (0.02) −0.02 (0.02) −0.05 (0.03) 0.00 (0.01) −0.00 (0.01)
Bias factor correlation −0.15 (0.08) 0.01 (0.12) 0.12 (0.10) −0.04 (0.07) −0.02 (0.06)

200 Geomin ð� ¼ 0:01Þ SRMR 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.98 (0.00) 0.97 (0.01) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.01 (0.01) 0.06 (0.01) 0.06 (0.01) −0.01 (0.01) 0.03 (0.01)
Bias cross-loadings 0.01 (0.00) −0.08 (0.01) −0.10 (0.01) −0.02 (0.00) −0.04 (0.01)
Bias factor correlation −0.04 (0.07) 0.22 (0.05) 0.24 (0.06) 0.07 (0.04) 0.13 (0.05)

Geomin ð� ¼ 0:5Þ SRMR 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.03 (0.01) −0.00 (0.01) 0.02 (0.01) 0.01 (0.01) −0.01 (0.01)
Bias cross-loadings 0.06 (0.01) −0.00 (0.01) −0.04 (0.01) 0.01 (0.01) 0.01 (0.01)
Bias factor correlation −0.17 (0.05) 0.03 (0.04) 0.12 (0.04) −0.09 (0.03) −0.01 (0.04)

CF-Varimax SRMR 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.04 (0.01) −0.01 (0.01) 0.01 (0.01) 0.02 (0.01) −0.01 (0.01)
Bias cross-loadings 0.06 (0.01) 0.01 (0.01) −0.04 (0.01) 0.02 (0.01) 0.02 (0.01)
Bias factor correlation −0.18 (0.04) 0.01 (0.04) 0.10 (0.04) −0.12 (0.03) −0.05 (0.03)

EnetΛ SRMR 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.98 (0.01) 0.98 (0.03) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.02 (0.01) 0.03 (0.01) 0.03 (0.02) −0.01 (0.01) −0.00 (0.01)
Bias cross-loadings 0.03 (0.01) −0.05 (0.01) −0.07 (0.01) −0.01 (0.01) −0.01 (0.01)
Bias factor correlation −0.09 (0.06) 0.16 (0.06) 0.18 (0.06) −0.01 (0.04) 0.03 (0.06)

EnetΛ;Φ SRMR 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.97 (0.05) 0.98 (0.01) 0.99 (0.00) 0.99 (0.00)
Bias main loadings −0.03 (0.01) 0.00 (0.03) 0.02 (0.01) −0.00 (0.01) −0.01 (0.01)
Bias cross-loadings 0.04 (0.01) −0.02 (0.02) −0.06 (0.01) −0.00 (0.01) −0.00 (0.01)
Bias factor correlation −0.12 (0.07) 0.05 (0.15) 0.14 (0.07) −0.03 (0.05) 0.00 (0.05)

Note. The index symbols indicate which parameters were penalized with Λ = Factor loading matrix and Φ = Factor correlation matrix. The numbers
outside the parentheses give the averages across all samples of the respective measure; the numbers in parentheses give the standard deviation across all
samples of the respective measure.
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a considerable extent. As in study 1, only regularized EFAwas
able to recover the parameters in the extended conditions.

Despite additional small sample biases, the present
results support the notion that (enet) regularization may
be used to estimate EFA without a separate rotation step.
Differences between Geomin rotated and enet regularized
estimates with respect to accuracy and stability were rather
small. As in Study 1, both methods tended to oversimplify
loading patterns with high cross-loadings, resulting in
inflated factor correlations. We note that the general size
of the biases was rather small, especially for the factor
loadings, and would arguably not lead to fundamentally
different interpretations of the factor loading pattern (e.g.,
a different selection of items). With respect to factor corre-
lation bias, we note that interpretations of factor correla-
tions should acknowledge the trade-off between the size of
the cross-loadings and the size of the factor correlation that
is inherent to all oblique factor analysis methods. In sum,
we conclude regularization is a suitable alternative to the
traditional factor rotation approach even in the case of
small samples.

GENERAL DISCUSSION

In two simulation studies, we compared the performance of
factor rotation and regularization in recovering predefined
factor loading patterns that resembled typical psychometric
data sets. Both with respect to asymptotic (Study 1) and
finite sample performance (Study 2), regularization resulted
in similar estimates as factor rotation. In line with previous
notions (Morin et al., 2013), Geomin rotation with an
increased rotation parameter � ¼ 0:5 was superior for factor
loading patterns with substantial cross-loadings but was
unable to recover perfect simple structures. An enet penalty
on both factor loadings and factor correlations showed the
best overall performance among the investigated regulari-
zation methods and provided reasonable balance between
the ability to recover simple structure, if it exists, and the
ability to handle complex loading patterns.

We set out to investigate whether regularization is
a suitable alternative to simple structure rotation in EFA.
With respect to the estimation performance, our results con-
firm that regularization is a viable alternative to factor rota-
tion. This is not to say that regularization is always the better
approach to estimate the EFA parameters but, across all con-
ditions in our simulations, it performed very well compared to
the arguably best among the commonly used rotation techni-
ques (cf. Asparouhov & Muthén, 2009; Schmitt & Sass,
2011). In addition, regularization was able to recover the
EFA parameters when only a subset of the items followed
a simple structure – where factor rotation failed to do so (cf.
Extended Simple/Complex 1 in Study 1). Thus, for typical

psychometric data sets it can be expected that the results of
regularized EFA match the results of simple structure rotated
EFA very well.

Despite the promising performance of regularized EFA, the
method is not without limitations: First, the penalization
approach implemented in regSEM is very simplistic because
all penalized parameters are treated equally, no matter whether
they are factor loadings, structural coefficients or factor (co-)
variances (or correlations). This could be a drawback because
the number of factor loadings always exceeds the number of
factor correlations or structural parameters; hence, the factor
loadings will have a stronger relative influence on the estima-
tion process (cf. Jacobucci et al., 2016; Jacobucci, 2017, for
technical details). Second, the lasso and enet penalty (just as
factor rotation) oversimplified complex loading patterns. It is
well-known that lasso can result in overshrinkage of parameter
estimates (here: cross-loadings), therefore, alternative methods
for obtaining the final parameters may be considered (see
Jacobucci et al., 2016, for a discussion). Lastly, our simulations
were limited to the cases where all assumptions of ML-EFA
and regSEMwere fulfilled. Further research is needed to assess
the sensitivity of regSEM to violations of distributional
assumptions and model misspecification (e.g., correlated resi-
duals). Especially the use of Likert scales may have profound
consequences on the estimation performance (DiStefano, 2002;
DiStefano & Morgan, 2014). Moreover, in the light of the
increasing availability of large data sets (e.g., Kosinski,
Wang, Lakkaraju, & Leskovec, 2016), future investigations
should also consider conditions in which the number of vari-
ables exceeds the number of observations.

Taken together, the present and previous research (e.g.,
Trendafilov, 2014; Yamamoto et al., 2017) suggest that, regard-
ing estimation performance, there is not much to lose when
replacing factor rotation with regularization but potential gains
are also rather small (except for situations as in our extended
conditions with partial simple structure). Therefore, applied
readers may wonder why they should consider replacing well-
established rotation procedures with regularization. We think
that regularization has advantages both at a pragmatic and at
a conceptual level: First, from a pragmatic perspective,
a general use of regularization over factor rotation considerably
alleviates the subjectivity of the analyses. Admittedly, research-
ers must still choose a penalty function just as they have to
choose a rotation technique – which cannot be optimally done
without a known ground truth – but the elastic net may provide
a reasonable default choice and at least the tuning parameter
can be determined in an objective and (nearly) automatized
way.

At a conceptual level, regularization offers
a generalization that subsumes EFA and confirmatory
factor analysis (CFA). These methods are often consid-
ered separate methods that have different purposes.
Using the penalized likelihood approach, however,
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both are simply two extremes in the space of possible
models - differing only in which parameters enter the
penalty term PðθÞ in Equation 8. EFA, on the one hand,
has measurement models where all paths are allowed
and all paths are considered to-be-regularized. CFA, on
the other hand, has measurement models where only the
theoretically motivated paths are estimated, all other
paths are constrained to zero, and no parameter enters
the penalty term. As a generalized method that contains
both EFA and CFA as special cases, regularization
allows all possible variations in between these two
extremes. In particular, it has been considered to specify
the theoretically motivated main loading paths but to
not include them into the penalty term and only regu-
larize all cross-loadings. Such a semi-confirmatory
approach allows researchers to specify a model that
considers there prior beliefs about the factor structure
but that does not completely depend on the validity of
these beliefs (Huang et al., 2017b).

Beyond basic factor analysis applications, the present find-
ings have implications for the more generalized Exploratory
Structural Equation modeling (ESEM) approach in which
factor rotation is an important step as well (Asparouhov &
Muthén, 2009). ESEMs extent EFA by a structural model of
the latent variables. As we operationalized regularized EFA
from a regSEM perspective, regularized EFA can be easily
extended to a regularized ESEM by (enet) penalizing the
factor loadings and correlations of the exploratory factors.
Such a regularized ESEM may be used to address similar
research questions as ESEM (see also Huang et al., 2017a).
Our results on factor rotation and regularization in the context
of EFA should in principle apply for a comparison of ESEM
and regularized ESEM as well. That is, the more complex the
exploratory measurement model, the more rotation and reg-
ularization will underestimate the cross-loadings and over-
estimate the factor correlations. Consequently, the structural
parameters may be distorted as well (Mai, Zhang, & Wen,
2018). Nevertheless, future research should investigate this
notion empirically and investigate how additional regulariza-
tion of the structural parameters affects the solutions.

Considering this connection, some of the central limita-
tions of ESEMsmay be solved in the regSEM framework. For
instance, in ESEM, it is mandatory that the relationships
between all or none of the exploratory factors with a given
predictor are specified (otherwise, the rotation procedure is
not valid, see Asparouhov & Muthén, 2009). RegSEM is
much more flexible in that respect, allowing researchers to
choose which parameters of the model should be penalized
and also add restrictions such as equality constraints to the
model. Consequently, regSEM obviates the need for work-
arounds to ESEM limitations such as the ESEM within
Confirmatory Factor Analysis approach (Morin et al., 2013).
In this context, it would, for instance, be interesting to extend
regSEM to the multi-level framework (e.g., Asparouhov &

Muthén, 2012; Rabe-Hesketh, Skrondal, & Zheng, 2007). All
in all, regSEM offers a consistent translation of the rotation
problem into an estimation problem – allowing for a unified
framework of both confirmatory and exploratory techniques.

Future research should directly compare the performance of
regSEM with other methods of semi-automatic model specifi-
cation such as specification search in order to develop recom-
mendations whichmethod is appropriate for which purposes. In
this context, it should be noted that regSEM and specification
search are closely related to Bayesian Structural Equation
Modeling (BSEM, e.g., Muthén & Asparouhov, 2011) because
best subset selection and common penalty functions may be
seen as a special case of BSEM with specific priors (Hastie
et al., 2009; Jacobucci & Grimm, 2018). Apart from providing
a unifying theoretical framework, the connection to BSEM
offers a range of possibilities for improvements because differ-
ent priors (i.e., penalty functions) could be placed on different
parameters. For instance, one could use different priors on the
factor loadings and factor correlations, respectively, in order to
achieve a better balance between cross-loadings and factor
correlations for complex loading patterns.

CONCLUSION

Regularization is an estimation method for complex statistical
models with increasing popularity among social scientists. In
two simulation studies, we compared the estimates of the
traditional rotated EFA approach and regularized EFA for
realistic factor loading patterns with varying complexity.
Regularized EFA performed very similar to common factor
rotation techniques in themajority of the considered conditions,
indicating that regularization is a suitable alternative to the
traditional rotation approach. Although regularized EFA was
not unequivocally the best method across all conditions, the
increased objectivity and the relation of the underlying regSEM
towider statistical frameworks such as ESEMandBSEMmake
it a valuable tool to be considered by social scientists.
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APPENDIX

Elastic net weights β for Study 1

TABLE A1
Elastic Net Weights β for All Conditions in Study 1

Condition enetΛ enetΛ;Φ

Perfect Simple 0.40 0.15
Approximate Simple 0.15 0.40
Complex 0.10 0.15
Extended Simple 1 0.20 0.65
Extended Simple 2 0.80 0.65
Extended Complex 1 0.30 0.70
Extended Complex 2 0.15 0.75
Extended Complex 3 0.65 0.10

Note. The index symbols indicate which parameters were penalized
with Λ = Factor loading matrix, and Φ = Factor correlation matrix.
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