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subgroup identification and analysis in
clinical trials
Ilya Lipkovich,a*† Alex Dmitrienkob and Ralph B. D’Agostino Sr.c

It is well known that both the direction and magnitude of the treatment effect in clinical trials are often affected
by baseline patient characteristics (generally referred to as biomarkers). Characterization of treatment effect
heterogeneity plays a central role in the field of personalized medicine and facilitates the development of tailored
therapies. This tutorial focuses on a general class of problems arising in data-driven subgroup analysis, namely,
identification of biomarkers with strong predictive properties and patient subgroups with desirable character-
istics such as improved benefit and/or safety. Limitations of ad-hoc approaches to biomarker exploration and
subgroup identification in clinical trials are discussed, and the ad-hoc approaches are contrasted with principled
approaches to exploratory subgroup analysis based on recent advances in machine learning and data mining.
A general framework for evaluating predictive biomarkers and identification of associated subgroups is intro-
duced. The tutorial provides a review of a broad class of statistical methods used in subgroup discovery, including
global outcome modeling methods, global treatment effect modeling methods, optimal treatment regimes, and
local modeling methods. Commonly used subgroup identification methods are illustrated using two case studies
based on clinical trials with binary and survival endpoints. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

The general topic of subgroup analysis has attracted much attention in the clinical trial community. An
increasing number of papers deal with statistical issues arising in the analysis of patient subgroups in
late-stage clinical drug development. These subgroups are defined based on the baseline values of demo-
graphic, clinical, genomic, and other covariates that will be referred to as biomarkers in this tutorial.
In addition, the U.S. Food and Drug Administration and European Medicines Agency have recently
released guidance documents that discuss regulatory and clinical and statistical approaches to subgroup
analysis [1, 2].

The need for a data-driven evaluation of patient subgroups may arise in various contexts and initiated
by different stakeholders [3]:

• A sponsor is interested in ‘salvaging’ an experimental treatment following a failed Phase III trial by
identifying a subgroup with a substantial treatment benefit.

• A sponsor is interested in identifying a subset of ‘super-responders’ in a successful Phase III trial.
• A policy maker is interested in identifying optimal treatment regimes (OTR) as rules for assigning

one of the treatments available on the market to a patient with a specific biomarker profile.
• A regulatory agency needs to investigate whether a label restriction should be issued due to incon-

sistent treatment effects of a novel treatment in a setting where the overall population effect may be
entirely driven by a highly significant effect in a single subgroup.

• A regulatory agency plans to investigate whether a label restriction may need to be imposed due to
an unacceptable safety profile in a certain subgroup.
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It is important, however, to understand that, while different contexts may and often would have differ-
ent regulatory implications, this may not necessarily require significant modifications of the underlying
statistical methodology. For example, the same class of subgroup investigation methods can be applied
to all of the settings listed previously.

To help organize available statistical approaches to biomarker evaluation and subgroup analysis in late-
stage trials, the following simple classification scheme is commonly used in the clinical trial literature:

• Confirmatory subgroup analysis deals with a small number of prospectively defined subsets of the
overall patient population.

• Exploratory subgroup analysis focuses on subgroup assessments that are performed in a post-hoc
manner.

This classification scheme may be overly simplistic, and several extensions have been proposed in the
literature [4]. This tutorial considers the following expanded scheme that was proposed in a recent survey
of current subgroup analysis practices [5]:

• Confirmatory subgroup analysis: statistical methods aimed mainly at controlling the Type I error
rate in Phase III clinical trials with a small number of pre-specified subgroups (1–2 subgroups).

• Exploratory subgroup evaluation: analysis of a relatively small number of pre-specified subgroups
(10–20 subgroups) that focuses mostly on treatment-by-covariate interactions and consistency
assessments.

• Post-hoc subgroup evaluation: post-hoc assessments of the treatment effect across small sets of
subgroups (10–20 subgroups) that include responses to regulatory inquiries, analysis of safety
issues, post-marketing activities in Phase IV trials, and assessment of heterogeneity in multi-regional
studies.

• Subgroup discovery: Statistical methods aimed at selecting most promising subgroups with enhanced
efficacy or desirable safety from a large pool of candidate subgroups (hundreds of subgroups). These
methods employ data mining/machine learning algorithms to help inform the design of future trials.

Confirmatory subgroup analysis and subgroup discovery define two extremes in this classification
scheme. Exploratory subgroup evaluation and post-hoc subgroup evaluation occupy the middle ground
between the two extremes. The latter approaches typically rely on naive or haphazard statistical strategies;
for example, it is not always clear how the candidate hypotheses were selected, how the decision rules
were justified, and what the operating characteristics of these approaches are. The differentiating feature
between exploratory and post-hoc subgroup assessments is that the former are pre-specified, for example,
in the trial’s statistical analysis plan, whereas the latter are driven by unanticipated findings after the
clinical trial data have been collected and analyzed.

All types of subgroup analysis, except the first one, are typically implemented as strategies that explic-
itly (or implicitly, as is often the case with post-hoc analyses) incorporate data-driven elements. In this
tutorial, we will emphasize the need of developing principled data-driven strategies for subgroup identi-
fication and evaluation where all data-driven elements are explicitly stated and implemented using solid
statistical principles (Section 2). Our goal is to provide practitioners with a broad class of statistical meth-
ods that can be used as building blocks of such principled strategies. While many of these methods may
have been motivated by (and may be more applicable to) subgroup discovery, methods considered in
this tutorial would generally apply to most settings where data-driven subgroup evaluation strategies are
employed. Occasionally, we will refer to such strategies as ‘exploratory’ in the most general sense rather
than implying the class of exploratory subgroup analyses defined previously.

This tutorial will focus on strategies for subgroup assessment where subgroups are defined by one or
more biomarkers selected from a set of candidate biomarkers. The biomarkers of interest are expected to
exhibit predictive abilities, that is, they help identify subsets of the trial population with desirable proper-
ties such as an improved efficacy profile. By contrast, purely prognostic biomarkers can be used only for
selecting patients who experience improvement or worsening irrespective of the treatment assignment. In
general, identification of patient subgroups in clinical trials relies on biomarker identification, and thus,
we will often refer to such activities as ‘subgroup/biomarker identification’. We note that other approaches
to evaluating treatment effect heterogeneity that do not involve biomarkers, for example, latent mixture
models, can be used in clinical trial settings. Such methods are beyond the scope of this tutorial.

It should be mentioned that new types of multi-stage biomarker-driven designs have been proposed
recently [6–9]. These designs are aimed at identifying biomarker signatures that help predict treatment
response at earlier stages of the trial and performing various adaptations such as modifying the patient
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population at later stages. These developments are outside the scope of this tutorial as we only focus on
algorithms for subgroup/biomarker identification rather than on utilizing this information to design clini-
cal trials. This tutorial does not discuss assessment of the so-called dynamic treatment regimes or policies,
for example, via SMART trials or analysis of observational data, which begin playing a significant role
in personalized medicine. Methods in this class deal with estimating optimal treatment policies based on
the data where the treatment can be assigned to the same patient at multiple decision points [10,11]. The
present review is limited to settings where the treatment decision is made at a single assessment point,
that is, at the trial’s baseline.

This tutorial is structured as follows. Section 2 defines the key principles of subgroup/biomarker iden-
tification that provide a foundation for a principled approach to exploratory subgroup analysis. Two case
studies that are used throughout the tutorial to illustrate commonly used subgroup identification methods
are introduced in Section 3. An overview of general approaches to biomarker analysis and subgroup dis-
covery methods, including a general classification scheme, is provided in Section 4. Section 5 discusses
the limitations of basic methods based on univariate and tree regression models. A detailed review of the
four classes of advanced methods for evaluating predictive biomarkers and identification of associated
patient subgroups is presented in Sections 6 (global outcome modeling methods), 7 (global treatment
effect modeling methods), 8 (optimal treatment regimes), and 9 (local modeling methods). Selected meth-
ods from each class are illustrated in Section 10. Section 11 provides general recommendations and a
summary of key features of the exploratory subgroup analysis methods highlighted in this tutorial.

2. Key principles of subgroup/biomarker discovery

In this section, we introduce key considerations in exploratory subgroup analysis or subgroup discovery
and define principled subgroup discovery. It is well known and understood based on numerous simulation
studies and purely theoretical arguments that ‘undisciplined’ subgroup exploration or ‘data-dredging’
may lead to substantial inflation of the Type I error rates and gross exaggeration of treatment effects in
the selected subgroups of patients. Therefore, vast literature was generated under the heading of ‘best
practices for subgroup analysis’ containing checklists of subgroup analysis ‘do’s’ and ‘do-not’s’ that
are meant to improve quality of exploratory subgroup analysis and prevent researches from committing
various errors. For example, a checklist with 25 rules was proposed in [12], Rothwell [13] developed 21
rules, and Sun et al. [14] listed seven existing and four additional criteria for assessing the credibility of
subgroup analysis. The general theme of these guidelines can be expressed in several recurring items:

(1) Subgroups need to be pre-specified.
(2) Subgroups need to be biologically plausible.
(3) All significance tests should be multiplicity adjusted.
(4) No testing in a subgroup should be performed unless the associated interaction test is significant.
(5) It is often suggested that no testing in a subgroup should be performed unless the overall effect is

significant.
(6) Invariably, the guidelines advise that the findings of subgroup analysis should be ‘interpreted

with caution’.

While this guideline-driven approach might have accumulated much of practical wisdom, some of
the recommendations are hard to operationalize and may not be consistent with the general scientific
principles/goals of a specific investigation. For example, Requirement 1 may limit the scope of sci-
entific inquiry. As noted by Berry [15], ‘…there’s something unscientific about requiring hypotheses
to be specified in advance. Science would proceed very slowly if scientists never took data at face
value’. Requirement 4 assumes that each subgroup is evaluated in a one-predictor-at-a-time fashion via
a parametric model including the main effect and interaction term, which is a rather narrow and often
inefficient approach to modeling. Requirement 5 ignores the very spirit of personalized medicine, which
aims at recovering possible heterogeneity of the treatment effect in a clinical trial. Most importantly,
the guideline-driven approach seems to be disconnected from the world of statistical science (in par-
ticular, statistical literature on model selection) and does not use principled methods for assessing and
incorporating uncertainty associated with decision making in exploratory subgroup analysis.

It is important to contrast the guideline-driven and data-driven approaches to subgroup analysis. The
latter recognizes subgroup investigation as a special case of model selection and thrives on statistical
methodologies for model selection developed within the machine/statistical learning and related fields,
including multiple comparisons and causal inference. The common thread in the data-driven approach is
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that it is the entire subgroup selection and evaluation strategy, rather than the final set of patient subgroups,
that needs to be pre-specified. Note that this strategy is data-driven in two aspects. First, it is similar to
any model selection method in that it identifies a few final models from a large set of candidate models
within the model space. This approach supports the goal of identifying best subgroups as members of
a broadly defined collection of candidate subgroups. Second, subgroup search strategies often include
meta-parameters or tuning parameters that are not pre-defined but need to be estimated from the data.
These parameters control the complexity of the model space or help the user navigate through the model
space to restrict it to a subset of models supported by the data. However, the entire strategy is pre-specified
in the sense that the model space and methods for estimating meta-parameters are fixed upfront.

In what follows, we present a short review of the key features of the principled subgroup analysis
methods to help the reader navigate in the ocean of methods recently proposed in the literature.

Evaluating the Type I error rate/false discovery rate for the entire subgroup search strategy. Until
recently, it was almost an established principle that the concept of statistical significance does not apply
to machine learning and data mining where the hypotheses tested are not pre-specified but ‘data-driven’
or ‘random’. However, more recently procedures that control for multiplicity (whether in the sense of
strong familywise error rate control or false discovery rate) have been developed for some machine
learning methods. For example, Meinshausen et al. [16] developed a significance testing approach for
high-dimensional regression via multiple random data splits, and Lockhart et al. [17] developed an ana-
lytical procedure for testing coefficients in the lasso regression under certain assumptions. Furthermore,
nowadays, many data mining procedures include statistical significance as its core element perhaps com-
bined with other concepts such as complexity and reproducibility. Just to list a few examples, see stability
selection [18], adaptive signature and cross-validated designs [19, 20] and the method for qualitative
interaction assessment [21]. As for any method used in confirmatory clinical development programs, con-
trolling an appropriately defined error rate (e.g., Type I error rate [22]) is very important for subgroup
identification procedures. Therefore, it should be emphasized that multiplicity control with respect to
the entire subgroup identification strategy is needed and approximate multiplicity control can be imple-
mented by applying resampling-based methods. However, as in any exploratory analysis, the Type I error
rate does not have to be controlled at the ‘magic’ 0.05 level, rather what is needed is a general sense
of how likely the apparent treatment effects in selected subgroups could have been attributed to chance
alone. As we will argue next, multiplicity control should be used in conjunction with complexity control
and adjustments for selection bias.

Using complexity control to prevent data overfitting. Because the model space may be quite large,
‘uncontrolled’ or greedy search is likely to result in data overfitting, that is, generating subgroups that
look very promising when evaluated with the same dataset that was searched but have a low chance to be
confirmed with future data. Applying multiplicity adjustments following subgroup selection is an impor-
tant but insufficient step, as it would not help find the right covariates ‘after the fact’. As with any data
mining/machine learning method, complexity control should be built into the process of model selection,
rather than implemented after model selection, when possibly wrong subgroups, for example, subgroups
based on irrelevant biomarkers, have already been identified. On the other hand, when complexity control
is built into the model selection process (e.g., via penalized likelihood), it alleviates multiplicity burden
and results in a less severe multiplicity adjustment compared with a greedy selection method with no
complexity control. Therefore, multiplicity and complexity control in subgroup search are inter-related
concepts and should be used in combination.

Controlling (reducing) selection bias when defining candidate subgroups. Subgroups of patients are
often defined by examining all possible ‘splits’ of the overall population using thresholds based on spe-
cific values of candidate covariates. Because different covariates may have drastically different sets of
unique values, which results in different numbers of possible subgroups for individual covariates, it is
important to ensure that the probability of falsely selecting an irrelevant subgroup does not depend on the
number of possible splits for different covariates. Otherwise, covariates with larger sets of unique values
will have an advantage over covariates with smaller sets. This problem was studied extensively in the
context of recursive partitioning algorithms by Loh and Shih [23] and Hothorn et al. [24].

Accounting for uncertainty of the entire subgroup search strategy. Many subgroup identification pro-
cedures are inherently multi-stage, and it is important to account for the uncertainty associated with the
entire subgroup search procedure when evaluating Type I error rates and standard errors of treatment
effect estimated within individual subgroups.
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Reproducibility assessment is concerned with the probability of reproducing subgroup(s) identified on
training data with future data. Clearly, a subgroup that has a very low chance to be confirmed with the
future data is of little use. Resampling procedures such as the bootstrap and cross-validation (CV) fol-
lowed by replicating the entire subgroup search strategy are often used for such assessments. Subgroups
that are stable in the sense that very similar subgroups are repeatedly seen in multiple re-samples will
have higher credibility for being reproduced in the future data. The degree of similarity among different
subgroups can be assessed based on subgroup descriptors or proximity of subsets of patients included in
each subgroup. The proximity of two subgroups can be assessed using appropriate similarity measures,
for example, Jaccard’s similarity index.

Obtaining ‘honest’ estimates of treatment effects in identified subgroups. Once subgroups have been
identified, the analyst is facing the challenge of obtaining unbiased or ‘honest’ estimates of the effect sizes
that should be anticipated in the future data. Resampling methods may often be the only feasible approach
within the frequentist framework. For example, the virtual twins (VT) method presented in Section 6.4
relies on an honest estimate of the treatment effect expected to be found in the future data within the
identified subgroup (in excess to that expected in the overall population) that is constructed using k-
fold CV and parametric and non-parametric bootstrap procedures. Bayesian approaches for estimating
effect sizes in the selected patient subgroups via hierarchical modeling or model averaging may provide
attractive alternatives [8, 25].

The users of subgroup analysis methods are also interested in determining objective criteria to help
select methods that perform better on their datasets. Some authors may focus on evaluation criteria that
exaggerate the advantages of their methods. Without offering the ‘final judgment’, we also suggest key
criteria for classifying different biomarker/subgroup identification strategies that were used in various
publications (Table XV).

3. Case studies

This section introduces two clinical trial examples that will be used throughout this tutorial to illustrate
key subgroup discovery methods and their software implementation. Both case studies provide exam-
ples of a retrospective approach to biomarker discovery and subgroup identification. Note, however, that
subgroup exploration will pursue different goals in the two case studies. Because the overall treatment
effect was negative in Case study 1, subgroup identification procedures could be applied in an attempt
to ‘rescue’ this failed trial and identify one or more subgroups of patients who experience a beneficial
effect. By contrast, a positive treatment difference was observed in the overall population in Case study 2.
The trial’s sponsor would therefore be interested in uncovering subgroups with enhanced efficacy, that
is, subgroups of patients with effect sizes that exceed the effect size in the overall population.

3.1. Case study 1

A Phase III trial was conducted to examine the efficacy and safety profiles of a novel treatment for severe
sepsis. A two-arm unbalanced design was utilized in the trial (novel treatment versus standard of care)
with 317 patients in the treatment arm and 153 patients in the control arm. The primary endpoint in the
trial was all-cause survival at 28 days (survived versus deceased), and no treatment benefit was detected
in the overall population of patients. In fact, the novel treatment was associated with a lower 28-day
survival rate compared with the control, and the one-sided treatment effect p-value was 0.83.

The trial’s sponsor was interested in a comprehensive characterization of the treatment effect by a
number of important biomarkers to verify whether a beneficial effect may exist in a subset of the overall
population. The candidate set of biomarkers included demographic and clinical variables such as patient’s
age and disease characteristics (Table I). For example, the acute physiology and chronic health evaluation
II score is a widely used tool for predicting the probability of survival in severe sepsis patients [26]. This
score is known to have strong prognostic abilities, that is, it helps identify patients with a poor prognosis
regardless of the treatment assignment, but its predictive properties are unknown, that is, it is not clear
whether or not it can be used for selecting treatment responders.

It is important to note that all eleven biomarkers listed in Table I are continuous; however, their distri-
butions may be highly skewed with a large number of outliers. In addition, the dataset contains missing
values for some covariates. The percent of missing observations does not exceed 5% for any biomarker
(as shown in parentheses): X10 (4.9%), X11 (3.8%), X9 (3.4%), X3 (0.6%), and X5 (0.2%).

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016



I. LIPKOVICH, A. DMITRIENKO AND R. B. D’AGOSTINO, SR.

Table I. Candidate biomarkers in Case study 1.

Biomarker Description Type Range

X1 Patient’s age (years) Continuous (33.2, 93.3)
X2 Time from the first organ Continuous (10, 3776)

failure to the start of drug
administration (hours)

X3 Baseline platelets (1000/mm3) Continuous (45, 650)
X4 Baseline SOFA score (unitless) Continuous (3, 17)
X5 Baseline creatinine (mg/dL) Continuous (1, 20)
X6 Number of organ failures Continuous (0, 5)

at baseline (unitless)
X7 Pre-infusion APACHE II score (unitless) Continuous (19, 48)
X8 Baseline GLASGOW coma scale Continuous (3, 15)

score (unitless)
X9 Baseline serum IL-6 Continuous (37, 296550)

concentration (pg/mL)
X10 Activity of daily living score Continuous (0, 12)

at baseline (unitless)
X11 Baseline bilirubin (mg/dL) Continuous (0.4, 20.4)

APACHE, acute physiology and chronic health evaluation.

Table II. Candidate biomarkers in Case study 2.

Biomarker Description Type Values

X1 Patient’s sex Nominal 1 (Male), 2 (Female)
X2 Patient’s race Nominal 1 (Asian), 2 (Black), 3 (White)
X3 Cytogenetic category Ordinal 1 (Very good), 2 (Good)

3 (Intermediate), 4 (Poor), 5 (Very poor)
X4—X12 Cytogenetic markers Nominal 0 (Absent), 1 (Present)

1 through 9
X13 Prognostic score for myelodysplastic Ordinal 1 (Low), 2 (Intermediate), 3 (High)

syndromes risk assessment (IPSS-R) 4 (Very high)
X14 Outcome for patient’s Nominal 1 (Failure), 2 (Progression), 3 (Relapse)

prior therapy

3.2. Case study 2

This case study deals with a Phase III clinical trial in patients with hematological malignancies. The
patients were randomly assigned to an experimental therapy plus best supporting care (treatment arm) or
best supporting care (control arm). The total sample size was 599 patients (303 patients in the treatment
arm and 296 patients in the control arm). The primary endpoint in the trial was overall survival, and
the treatment effect was expressed using a hazard ratio. The hazard ratio was borderline clinically and
statistically significant in the overall population (hazard ratio = 0.85 with one-sided p = 0.0367). The
trial’s sponsor decided to conduct a subgroup search to investigate subsets of the overall population with
an improved benefit/risk ratio. The findings could potentially lead to a decision to restrict the patient
population in subsequent trials.

A number of potentially predictive biomarkers were identified by the sponsor to support a compre-
hensive assessment of treatment effect heterogeneity across important subsets of the overall population.
The final set of candidate biomarkers selected in Case study 2 is defined in Table II. This list includes
demographic variables, clinical variables related to baseline disease severity, and cytogenetic markers.

There were no continuous biomarkers in the candidate set. Two biomarkers were ordinal
(X3 and X13), and the other biomarkers were measured on a nominal scale. As in Case study 1, there
were missing/unknown values in this dataset. Specifically, the IPSS-R score (X13) was missing for
eight patients.
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4. Overview of biomarker evaluation and subgroup discovery methods

This section defines the problem of biomarker evaluation and subgroup identification in clinical trials and
introduces a general classification of statistical methods utilized in exploratory subgroup analysis. This
taxonomy of emerging subgroup analysis methods will play an important role in Sections 6 through 9.

4.1. General setting

To facilitate the exposition of available approaches to subgroup identification in clinical trials, we will
define a general subgroup discovery setting and introduce notation, which will be used throughout this
tutorial. Upper-case letters will be used to refer to random variables, for example, X and Y , and lower-
case letters to refer to individual observations, for example, 𝐱. To simplify notation, lower-case letters
without patient-specific subscripts may be used to refer to the observed values of random variables for an
arbitrary patient, for example, f (𝐱, t). However, when referring to individual outcomes or covariates as
random variables, we will always use upper-case letters. For example, when computing the expectation
with respect to the outcome for the ith patient, the outcome will be denoted by Yi, and similarly, the
associated vector of random covariates will be denoted by as 𝐗i.

Consider a clinical trial that was conducted to evaluate the efficacy and safety of an experimental
therapy versus a control. Let yi denote the outcome variable (Y) evaluated on the ith patient (i = 1,… , n),
which can be continuous, binary, or based on the time to an event of interest such as death or disease
progression (in the latter case, the outcome may be censored and a censoring indicator will need to be
introduced). Suppose that a larger value of the outcome variable indicates a beneficial effect, for example,
a larger value of Y is associated with a greater improvement in the continuous endpoint setting or longer
survival in the time-to-event setting. Here, n is the total sample size in the trial. Further, let ti denote the
study arm indicator (T) for to the ith patient, that is, the patient was assigned to the control arm if ti = 0
and experimental treatment arm if ti = 1.

Suppose that p candidate biomarkers, denoted by X1,… ,Xp, were studied in this clinical trial. Let
𝐱i = {xi1,… , xip} denote a vector of observed biomarker values for the ith patient evaluated prior to
the initiation of treatment. A subgroup S(𝐗) is defined by a rule, which selects a subset of the overall
population based on the vector 𝐗. For example,

S(𝐗) = I{X1 > c}

is composed of all patients with elevated levels of the biomarker X1. Applying this rule to a particular
dataset, we obtain the estimated patient subgroup (which sometimes will be emphasized by placing a hat
over the S):

Ŝ(𝐗) = {xi1 > c, i = 1,… , n}.

Let f (𝐱, t) = E(Y|𝐗 = 𝐗,T = t) denote the expected response of a patient as a function of the vector 𝐗
and treatment assignment T evaluated at points 𝐱 and t, respectively. This is the familiar Q-function from
the literature on OTRs (see Section 8 for details). Further, let z(𝐗) denote the treatment contrast defined
at the patient’s level, that is, as the function of random covariate vector 𝐗,

z(𝐗) = g(f (𝐗, 1), f (𝐗, 0)),

where g(⋅) is a monotone function of its arguments. For example, if the outcome variable is continuous,
z(𝐱) may be defined as the treatment difference, that is,

z(𝐗) = f (𝐗, 1) − f (𝐗, 0).

In this case, the expected outcome function can be written as

f (𝐗, T) = f (𝐗, 0) + z(𝐗)T ,

In a more general case, the outcome function can be represented [27] as

f (𝐗,T) = g(h(𝐗) + l(z(𝐗)T)),

where h(⋅) is an arbitrary ‘baseline’ function of the covariate vector, l(⋅) is a monotone function, and
z(⋅) summarizes the individual treatment effect. In light of this representation, the distinction between
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prognostic and predictive biomarkers becomes very simple. Prognostic biomarkers are defined as those
that contribute only to h(𝐗) (i.e., ‘main effects’), whereas predictive biomarkers also contribute to z(𝐗).
All the relevant information about predictive biomarkers is included in the individual treatment contrast
z(𝐗), and the success of personalized medicine hinges on recovering this function. By contrast, the prob-
lem of estimating the main effects in the outcome model, that is, h(𝐗), is not relevant in personalized
medicine applications.

It is worth mentioning the concept of potential outcomes, which plays an important role in several
classes of subgroup search methods. Considering the general setting introduced previously, two potential
outcomes, denoted by Ỹi(0) and Ỹi(1), are defined for the ith patient. These random variables represent
hypothetical outcomes that would have been realized had a random patient been assigned to the treatment
T = 0 or T = 1, respectively. The consistency assumption states that the observed outcome is the same as
the potential outcome under the treatment actually received. For example, if the ith patient was allocated
to the control arm, Ỹi(0) = Yi and Ỹi(1) is unobserved but can be estimated from the data to predict
the patient’s outcome, if the patient were allocated to the treatment arm. It is easy to see that, assuming
consistency, the observed outcome as a random variable is connected with the two potential outcomes
as follows:

Yi = Ỹi(0)(1 − Ti) + Ỹi(1)Ti, i = 1,… , n.

The outcome function f (𝐗,T) with T = 0 or 1 for any given covariate vector 𝐗 = 𝐱 can be estimated as
expected value of the corresponding potential outcome, Ỹ(0) or Ỹ(1), conditional on 𝐗 = 𝐱. This requires
the so-called ‘stable unit treatment value assumption’, which implies that: (i) the treatment status of any
patient does not affect the potential outcomes of the other patients; and (ii) there is no hidden variation
in the treatment (such as if some patients were taking adjunct medication that may affect the potential
outcomes under their main treatment) [28].

4.2. Two frameworks of personalized medicine

Subgroup analysis procedures developed for personalized medicine applications are commonly concep-
tualized within the following two frameworks:

• The first framework aims at identifying the right patient for a given treatment. To give an example,
consider a trial’s sponsor who is interested in developing a ‘salvaging strategy’. This includes identi-
fication of subgroups of patients who may still benefit from an experimental therapy versus a control
given that the therapy provides minimal or no benefit in the overall population.

• The second framework deals with identifying the right treatment for a patient. Consider, for example,
the problem of finding the OTR or policy for a given subpopulation. This framework appears to
represent the society’s view or public policy maker’s view of personalized medicine.

Although the two frameworks are closely related to each other, there are important differences, both
conceptual and statistical. The two approaches are illustrated graphically in the left-hand and right-hand
panels of Figure 1, respectively. The thick and thin lines represent the expected outcome in the treatment
(T = 1) and control (T = 0) arms in the figure. Larger values of the outcome indicate a beneficial effect.
The horizontal axis represents a continuous biomarker X. Note that the two lines have non-zero slopes
and are not parallel, which indicates that the biomarker is both prognostic and predictive.

One of the differences in the statistical formulation of the two approaches is that the first approach
entails searching for predictive biomarkers exhibiting quantitative interactions and modifying the overall
treatment effect, so that the expected treatment contrast z(𝐱) in the identified subgroup S is substantially
larger compared with that in the overall population. If the overall effect is not significant, the trial’s spon-
sor may wish to ‘salvage’ the treatment by looking for a ‘bump’ in the expected treatment difference as a
function of the biomarker level (or, in general, multiple biomarkers). In addition, the overall population
effect may be quite large, and the sponsor may be interested in identifying a subset of ‘super-responders’
by applying the same approach. An example of such a bump in the treatment arm is seen in the left-hand
panel and suggests that patients in the subgroup S = {X > c1} are likely to experience a beneficial effect,
whereas little treatment benefit is observed in the complementary subgroup.

The subgroup of interest may be defined formally by using a condition based on an appropriate
threshold value, for example,

z(𝐗) > 𝛿 implies 𝐗 ∈ S.
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Figure 1. Two frameworks of personalized medicine: identification of the best patients for a treatment (left-hand
panel) versus identification of the best treatment for a patient (right-hand panel). The thick and thin solid lines in
each panel represent the expected outcome function for the experimental treatment (T = 1) and control (T = 0),
respectively. The dotted lines are obtained by subtracting a fixed amount of 𝛿 from the outcome in the treatment

arm, where 𝛿 can be interpreted as a clinically important difference or the ‘treatment burden’.

Here, 𝛿 > 0 is a clinically important difference, which can be defined as an absolute value or as a multiple
of the treatment effect in the overall population, that is, 𝛿 = sEz(𝐗), where s > 1 is a pre-specified
constant and the expectation is taken with respect to the distribution of 𝐗. This subgroup is illustrated in
the left-hand panel of Figure 1 with the vertical line drawn at c2.

Note that a subgroup of interest may also be defined using a weaker condition that the expected
treatment contrast within the subgroup exceeds a given threshold value, that is,

E(z(𝐗)|𝐗 ∈ S) > 𝛿.

While this criterion may appear reasonable, it can be used only as a method of subgroup valida-
tion, assuming that the subgroups have been produced by a procedure that ensures homogeneity of
treatment effect in the selected subgroups. However, using the aforementioned condition to define a
patient subgroup would exhibit undesirable properties; for example, the condition can be easily met by
a heterogeneous subpopulation that combines patients with extremely high and modest values of the
treatment contrast.

The second approach requires the identification of predictive biomarkers that exhibit qualitative
interactions leading to different optimal treatment strategies for different types of patients. With a qual-
itative interaction, patients with certain values of the biomarker, known as biomarker-positive patients,
experience a pronounced treatment effect, whereas patients in the complementary subgroup, known as
biomarker-negative patients, benefit from the control. A natural way to define the subgroups would be to
partition the entire population into the following two subsets:

• subset of patients who benefit from the experiential treatment, that is, patients with z(𝐗) > 0; and
• complementary subset of patients, that is, patients with z(𝐗) ⩽ 0.

An example of partitioning the population into two subgroups is provided in the right-hand panel
of Figure 1 with a vertical line drawn at c1. Similarly to the first framework presented previously, this
condition can be generalized by introducing a threshold value 𝛿 and defining biomarker-positive patients
as the patients in the subgroup {z(𝐗) > 𝛿}. Using the right-hand panel of Figure 1, a subgroup of this
kind can be defined as S = {X > c2}.

It is often believed and argued that qualitative treatment-by-covariate interactions are rare, and there-
fore, the second framework is not very relevant for drug development. Note, however, that the quantitative
interaction shown with the two non-crossing expected outcome lines in the left-hand panel of Figure 1
becomes qualitative after we introduce the threshold value of 𝛿, which is equivalent to shifting the out-
come line in the treatment arm (T = 1) downward until it becomes the dashed line that crosses the
outcome line associated with the control arm. Indeed, one can argue that the threshold value may be nat-
urally interpreted as the ‘treatment burden’ either for the patient (e.g., side effects associated with the
new treatment) or for the society (e.g., additional costs associated with the new treatment). This leads
to a ‘utility index’, which may be defined as U = Y − 𝛿 for the patients who undergo the new treat-
ment and U = Y for the patients who are treated with the current standard of care. While the original
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outcome variable may interact with the treatment quantitatively, the utility index U is more likely to
exhibit a qualitative interaction. This simple example demonstrates that qualitative interactions are, in
fact, quite relevant in clinical trial settings.

4.3. Principled approaches to subgroup discovery

The notation and concepts introduced in Sections 4.1 and 4.2 provide a foundation for defining a general
classification scheme for advanced methods for evaluation of predictive biomarkers and identification of
associated subgroups of patients. These methods support the ‘discovery spirit’ of personalized medicine
in the sense that they focus on data-driven subgroup exploration and, at the same time, they rely on a
disciplined approach, which utilizes the key principles introduced in Section 2. The subgroup discov-
ery methods utilize analytic strategies with known operating characteristics and thus result in reliable
statistical inferences.

It is instructive to compare and contrast the principled subgroup discovery framework with basic/naive
methods for biomarker evaluation. These approaches are often employed in the context of exploratory and
post-hoc subgroup evaluation with respect to a small set of baseline factors (Section 1), and it is also quite
common to use them in subgroup discovery applications with large sets of biomarkers. While basic meth-
ods may provide some useful insights into predictive biomarkers, these methods rely on rather ad-hoc
procedures whose operating characteristics and statistical properties may be suboptimal and/or hard or
even impossible to assess. In actual clinical practice, such basic methods are often combined in complex
multi-stage strategies involving human intervention and ‘fine-tuning’, which results in procedures that are
impossible to formalize, replicate, and evaluate. For this reason, these ‘popular’ approaches are becoming
less relevant within the personalized medicine framework considered in this tutorial. As shown in multi-
ple recent publications, including [29,30], an application of basic approaches to biomarker evaluation in
complex subgroup discovery problems leads to spurious results. Recently, Ruberg and Shen [31] empha-
sized the need for ‘disciplined’ subgroup search methods for personalized medicine and distinguished
them from traditional ad-hoc subgroup assessments. Examples of basic methods based on univariate and
tree regression models will be provided in Section 5.

Lipkovich and Dmitrienko [32] proposed a general taxonomy of principled approaches to biomarker
evaluation and subgroup identification. A slightly modified version of this classification scheme will be
used throughout this tutorial to facilitate the discussion of specific methods for subgroup discovery:

• Global outcome modeling methods deal with modeling the underlying outcome function f (𝐗, T)
(Section 6).

• Global treatment effect modeling methods deal with modeling the treatment contrast function z(𝐗)
(Section 7). A very important special case of this approach is a class of methods that aim at recovering
OTRs given a set of patient’s covariates (Section 8).

• Local modeling methods focus on direct search for subgroups with a beneficial treatment effect, that
is, identifying subgroups of patients with higher values of z(𝐗) (Section 9).

5. Basic biomarker evaluation methods

As indicated in Section 4.3, it is quite common to consider simplistic approaches to assessing the impact
of multiple baseline covariates on the outcome variable in late-stage clinical trials. This includes sub-
group discovery settings where the trial’s sponsor is interested in identifying subgroups of patients with
desirable characteristics based on large sets of candidate biomarkers. It will be shown in this section
that basic univariate and even multivariate methods fail to address the main goal of subgroup discovery,
namely, these methods focus on prognostic biomarkers and provide little or no information on predictive
biomarkers that can be used to define subgroup with improved efficacy or safety. The basic approaches to
biomarker evaluation and subgroup identification will be contrasted with advanced/principled approaches
presented in Sections 6 (global outcome modeling methods), 7 (global treatment effect modeling
methods), 8 (optimal treatment regimes), and 9 (local modeling methods).

We will first consider an approach that may be termed the univariate regression approach. Suppose
that a set of candidate biomarkers that are believed to be predictive of treatment response has been pre-
specified. This approach relies on fitting a series of regression models with the terms for treatment, single
biomarker, and treatment-by-biomarker interaction. If the interaction term is significant at a pre-specified
significance level (e.g., 𝛼 = 0.1), the corresponding biomarker is retained for the next step. The resulting
promising biomarkers are then used to define patient subgroups. Subgroups based on binary biomarkers
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are constructed in a straightforward manner, and continuous/ordinal biomarkers are dichotomized before
subgroups are set up. The process of dichotomization is based on appropriately defined ‘optimal’ cutoff
values or clinically relevant cutoffs, for example, the cutoff of 60 years may be considered for the patient’s
age because it is commonly used in other clinical trials. An important feature of the univariate regression
approach is that it supports only patient subgroups based on a single biomarker, and interactions among
the biomarkers are not accounted for.

The second common approach utilizes tree-based regression models (e.g., CART methodology intro-
duced in [33]) with the set of predictors comprised of the candidate biomarkers as well as the binary
treatment indicator. Unlike the univariate regression approach, this tree-based regression approach incor-
porates information on higher-order interactions effects and can be applied to define subgroups based
on multiple biomarkers (biomarker signatures). Second, cutoff values do not need to be pre-specified for
continuous/ordinal biomarkers. The cutoffs are automatically estimated from the data in the process of
fitting a tree-based model.

5.1. Artificial example

To illustrate the pitfalls of the two classes of basic approaches to subgroup identification defined previ-
ously, we will consider an artificial example. The example was based on a clinical trial dataset with the
total of n = 200 patients. A balanced two-arm design was assumed and ti defined the treatment indicator
for the ith patient (ti = 0, placebo arm; ti = 1, treatment arm). There were two continuous biomarkers in
the dataset (X1 and X2), and 𝐱i = (xi1, xi2) denoted their values for the ith patients. The two biomarkers
were independent of each other and followed a uniform distribution on [0, 1]. The outcome variable was
defined using the following model:

yi = 2xi1 + 3xi2 + I(xi1 ⩽ 0.5)I(xi2 ⩽ 0.5)ti + 𝜀i, (1)

where I(u) is the indicator function, that is, I(u) = 1 if u is true and 0 otherwise, and 𝜀i is a standard
normal variable that is independent of xi1 and xi2. It follows from this model that the true cutoff value
for both biomarkers was equal to 0.5. Note that the covariates X1 and X2 affected the outcome variable
directly as the main effects and via the treatment-by-covariate interaction. Therefore X1 and X2 carried
both prognostic and predictive effects.

As in Section 4.1, the (hypothetical) individual treatment difference for the ith patient was defined as
the difference between the expected treatment effect if the patient was assigned to the treatment arm and
that if the patient was assigned to the placebo arm:

z(𝐱i) = E(Y|𝐗 = 𝐱i,T = 1) − E(Y|𝐗 = 𝐱i,T = 0) = I(xi1 ⩽ 0.5)I(xi2 ⩽ 0.5).

The average treatment difference within an arbitrary subgroup S was defined in a similar way:

z(S) = E(Y|𝐗 ∈ S, T = 1) − E(Y|𝐗 ∈ S,T = 0).

The average treatment differences induced by the outcome model (1) within the key subgroups are shown
in Table III. We can see that a positive treatment effect (z(S) = 1) was restricted to the following subgroup:

S = {X1 ⩽ 0.5 and X2 ⩽ 0.5}.

This subgroup will be referred to as the true subgroup. In addition, Table III shows that the true subgroup
naturally induced positive treatment differences in its supersets, including, for example,

S1 = {X1 ⩽ 0.5}, S2 = {X2 ⩽ 0.5}.

Table III. Average treatment differences within
the key subgroups and overall population (OP) in
the simulated dataset.

Subgroup {X1 ⩽ 0.5} {X1 > 0.5} OP

{X2 ⩽ 0.5} 1.0 0.0 0.5
{X2 > 0.5} 0.0 0.0 0.0
OP 0.5 0.0 0.25
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Table IV. Identification of the treatment-by-biomarker interactions based on univariate
regression models in the simulated dataset.

Interaction effect
Label Fitted regression model for E(Y) p-value

Model A1 a0 + a1X1 + a2T + a3X1T 0.2830
Model B1 a0 + a1X1 + a2T + I(X1 ⩽ 0.5)T 0.4200
Model C1 a0 + a1I(X1 ⩽ 0.5) + a2T + a3I(X1 ⩽ 0.5)T 0.8627
Model A2 a0 + a1X2 + a2T + a3X2T 0.6390
Model B2 a0 + a1X2 + a2T + I(X2 ⩽ 0.5)T 0.0394
Model C2 a0 + a1I(X2 ⩽ 0.5) + a2T + a3I(X2 ⩽ 0.5)T 0.1730
Correct model a0 + a1X1 + a2X2 + a3T + a4I(X1 ⩽ 0.5)I(X2 ⩽ 0.5)T 0.00003

It is easy to verify that z(S1) = z(S2) = 0.5 and the average treatment difference in the overall population
of patients (OP) was 0.25.

A dataset was simulated from the outcome model (1). The treatment difference in the overall patient
population was trivial (one-sided p = 0.3995), and a significant beneficial effect was detected in the
subgroup S (one-sided p = 0.0164).

5.2. Performance of the univariate regression approach

To characterize the performance of the univariate regression approach to subgroup identification in this
simple setting, three models were fitted for each of the two biomarkers:

• Model A: model with the original biomarker included in the main term and interaction term;
• Model B: model with the original biomarker in the main term and dichotomized biomarker in the

interaction term; and
• Model C: model with the dichotomized biomarker in the main term and interaction term.

The models are defined in Table IV. For simplicity, it was assumed in Models B and C that the true cutoff
value (0.5) was known. As the benchmark, the correct model is also shown in Table IV. This model
includes the outcome model (1) as a special case when a0 = 0, a1 = 2, a2 = 3, a3 = 0, and a4 = 1.

Table IV lists the one-sided interaction effect p-value (i.e., p-value for testing the null hypothesis that
the treatment-by-biomarker interaction coefficient is zero) for each of the seven regression models. It fol-
lows from the table that, with the exception of the correct model, the interaction effect tests did not detect
the predictive effect of the selected biomarker, that is, did not detect a significant interaction between the
biomarker and treatment indicator. The interaction effect p-value computed from Model B2 was likely
to be significant by chance. Note that the p-value in the similar model based on the other biomarker
(Model B1) was far from being significant.

These results presented in Table IV demonstrate that univariate regression modeling with interaction
terms may perform quite poorly and fail to uncover predictive effects of candidate biomarkers. This is
because, with one variable examined at a time, a subgroup defined by a multi-variable ‘signature’ is
likely to be missed. While the individual predictive effects of the biomarkers X1 and X2 may appear fairly
substantial in Table III based on the assumed outcome model (1), the sampling error in a dataset with
only a hundred of patients per arm can easily render them non-existent, as was actually the case in this
particular dataset. Further, even though the cutoff value for dichotomizing the biomarkers was assumed
to be known in Models B and C, the interaction test within a regression model may not be meaningful
if the main effect is misspecified (Models B2 and C2). To summarize, the key deficiency of univariate
regression models is that they ignore potential synergistic effects of two or more biomarkers by failing
to account for higher-order interaction effects.

5.3. Performance of the tree-based regression approach

Tree-based regression models are often used as a tool for discovering treatment-by-covariate interactions
and identifying potentially predictive biomarkers in clinical trials. To examine the performance of the
tree-based regression approach, it was applied to the simulated dataset defined earlier in this section. The
tree-based approach was implemented using the rpart package (R package that implements recursive
partitioning for classification and regression trees closely following the original CART method [33]).

We will use this example to quickly introduce regression trees as they will be used later in this tutorial,
often as a building block for other more complex methods such as random forests used in the VT method
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Figure 2. Cross-validation error profile for trees of different sizes in the simulated dataset.

(Section 6.4). A tree model partitions the covariate space into non-overlapping regions (leaves or ‘terminal
nodes’) and any patient is allocated to only one region based on his or her covariates. Because a tree
is organized as a decision tree, a patient is allocated to a terminal node by sequentially examining the
patient’s covariates starting from the first split until the patient reaches a terminal node. This is sometimes
referred to as ‘running a patient down the tree’. The predicted value is defined as the average outcome
value within the resulting terminal node.

As a quick illustration, let us assume that a tree is fitted to a dataset with 10 covariates and consider a
terminal node (patient subgroup) described by three covariates:

S = {X1 ⩽ 10 and 1 < X2 ⩽ 5 and X7 = ‘Male’}.

Other terminal nodes may involve more or less covariates depending on the shape of the tree. Although
at the first sight this may appear different from plugging the covariate vector 𝐱 into a typical statistical
model (e.g., a linear regression), fundamentally, it is the same process of evaluating a function f (𝐱) on
a covariate vector 𝐱. One apparent but superficial difference is that, when a traditional statistical model
is fitted to a set of covariates, all these covariates should be included in the evaluation of f (𝐱). In case
of a tree, only those covariates involved in defining a relevant terminal node are used, for example, only
three covariates were utilized to allocate patients to the terminal node defined previously. Philosophical
difficulties in absorbing trees and even more complex ‘black box models’ by the statistical community
were discussed at length in the well-known Leo Breiman’s paper [34] and conceptualized as the difference
between the ‘data modeling culture’ and ‘algorithmic modeling culture’.

Returning to the simulated dataset based on the outcome model (1), an ‘overgrown’ tree with 10 leaves
and the minimum sample size of 10 patients per node was first generated. CV was then applied to prune
the tree to an optimal size. A common recipe for choosing a best-sized tree is to select the smallest
(simplest) tree whose CV error is within one standard deviation of that for the tree with the lowest error
(this rule is known as the ‘minCV+1SE’ rule). This can be accomplished via cost-complexity pruning
as explained in Breiman et al. [33]. Figure 2 presents the CV error plot used in the pruning procedure.
The lowest CV error was achieved for the tree with seven leaves, and the CV error within one standard
deviation from the seven-leaf tree is represented by the dotted line. The simplest tree with the CV error
below this line was the five-leaf tree, which indicates that the original tree needs to be pruned down to
five leaves (the corresponding cost-complexity penalty was 0.041). The final five-leaf tree fitted to the
simulated dataset is shown in Figure 3.

The splitting rules used in the final tree are shown at the top of each parent node in Figure 3. For
example, the first split was made on the second biomarker with the following child subgroups:

• Left branch: L1 = {X2 ⩽ 0.39}.
• Right branch: R1 = {X2 > 0.39}.

After that, both child subgroups were split by the first biomarker, and so on, until five terminal subgroups
were constructed. The biomarkers were selected whenever they were considered best splitters based on
the reduction in the residual sums of squares (RSS) due to the split, that is, comparing the RSS ‘after the
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Figure 3. Pruned tree with five leaves fitted to the simulated dataset. Patients who meet the splitting condition
form the left branch and those who do not form the right branch. The mean value of the outcome variable is

displayed within each terminal node.

Figure 4. Example of an unpruned tree fitted to the simulated dataset.

split’ versus ‘before the split’. The average values of the outcome variable (Y) in each terminal subgroup
displayed in Figure 3 defined a piecewise-constant fit. It is clear that larger values of the biomarkers
corresponded to higher values of the outcome variable.

If the treatment indicator was selected as the splitting variable in the final tree-based model, this would
help identify subgroups of patients who experience a beneficial treatment effect. However, because the
overall treatment difference was rather trivial, the reduction in the sum of squares criterion based on
the treatment variable alone was very modest in the beginning of the tree fitting process. As a result,
the treatment variable could not compete with the strong prognostic biomarkers X1 and X2.

If we let the tree grow to the full size (allowing for terminal subgroups with as few as 10 patients), the
treatment indicator would eventually be picked up by the tree-based regression model. The resulting tree,
however, would clearly overfit the data. To give a quick example, consider the overgrown tree displayed in
Figure 4. The treatment variable appeared for the first time rather late in the splitting process. For example,
a subgroup defined using the treatment indicator was a subset of the following subgroup displayed in the
left part of the tree: {X1 > 0.17 and X2 ⩽ 0.15}. This subgroup is not even close to the true subgroup
assumed in the outcome model (1), that is, {X1 ⩽ 0.5 and X2 ⩽ 0.5}. It should not be surprising that this
tree identified incorrect subgroups. The tree-fitting process is not aimed at recovering subgroups with a
differential treatment effect but rather at selecting subgroups with differential outcomes. In other words,
the tree-based regression approach supports the analysis of biomarkers with prognostic properties but
provides little information on predictive biomarkers.
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6. Global outcome modeling

The main approach of the biomarker evaluation and subgroup search methods in this class is to build a
global model with a potentially large number of variables selected from all available candidate covariates
and treatment-by-covariate interactions. The process of fitting a reliable model in this setting is quite
challenging and methods of penalized and ensemble regression are commonly utilized to address this
complex problem. We note that modeling of the response function can be performed either separately
within each treatment arm, which results in estimating f (𝐱, 1) and f (𝐱, 0), or as a single model fitted to
f (𝐱, t), which requires explicitly modeling the treatment-by-covariate interactions. This tutorial focuses
on the latter type of models. The resulting global model is applied to evaluate differential treatment effects
across relevant patient subgroups and select subsets of the overall population with a beneficial effect by
defining thresholds for the estimated individual treatment differences.

6.1. Overview of global outcome modeling methods

We will begin with a general overview of approaches that rely on global outcome modeling and provide
a detailed description of selected methods in this class later in this section. These approaches can be
grouped into parametric and non-parametric approaches. It is worth mentioning that, within the paramet-
ric framework, considerable attention was dedicated to modeling the relationship between the outcome
and continuous covariates, possibly varying by treatment. A good example is an application of multivari-
able fractional polynomial interactions [35] to modeling treatment-by-covariate interactions in Royston
and Sauerbrei [36]. While this approach may provide useful insights when dealing with a small number
of candidate biomarkers, it appears less practical in complex biomarker discovery programs that require
the evaluation of treatment interactions with hundreds if not thousands of candidate biomarkers.

As indicated previously, penalized regression methods are often used when modeling the outcome as
a function of the prognostic effects of baseline covariates as the main effects (and possibly higher order
interactions with other covariates) and their predictive effects (modeled as interactions with the treat-
ment indicator). Because there may be a substantial number of such potential interaction effects, fitting
them within a standard likelihood-based framework may not be feasible. To address this problem, var-
ious penalized methods (also known as regularization methods) that place constraints on the regression
coefficients can be applied. The constraints cause the interaction effects to shrink towards zero. In partic-
ular, with the lasso penalty [37], some of the effects shrink exactly to zero, which leads to biomarker and
subgroup selection methods. For example, Imai and Ratkovic [38] developed the FindIt method, which
utilizes a support vector machine (SVM) classifier with separate lasso-type constrains over the predic-
tive and prognostic effects included in the model. This approach accounts for the fact that the predictive
effects are inherently weaker and need to be treated differently from the prognostic effects. We will
provide more information on penalized regression approaches in Section 6.2. The penalized regression
methods will be applied to Case study 1 with a binary outcome variable in Section 10.2.

Several subgroup search procedures in this class make use of the concept of potential outcomes intro-
duced in Section 4.1. Cai et al. [39] developed a two-stage method for assessing the treatment effect
heterogeneity at the patient level. At the first stage, a proportional hazards Cox regression model with pre-
selected covariates is fitted to the data to estimate the treatment difference at the patient level. After that
a non-parametric smoothing method is applied to construct simultaneous confidence bands for the treat-
ment differences estimated in the first stage. Patients with a large estimated treatment difference can be
included in a target subgroup. Zhao et al. [40] proposed a systematic method for building and evaluating
different classifiers for defining patient subgroups based on thresholding estimated treatment difference
scores at various cutoffs (see also [41] and [42] for related ideas).

Another important example of utilizing potential outcomes to construct subgroup identification pro-
cedures is the non-parametric VT method [43]. The underlying regression function f (𝐱, t) is estimated
in the first stage using random forests [44] (other methods of ensemble regression can also be applied).
Once a random forest has been fitted to the data, two predicted outcomes are obtained for the ith patient,
assuming that the patient was allocated to the treatment or control arms, respectively, that is,

f̂ (𝐱i, 0) and f̂ (𝐱i, 1), i = 1,… , n.

The hypothetical treatment difference zi is then estimated for each patient as follows:

ẑ(𝐱i) = f̂ (𝐱i, 1) − f̂ (𝐱i, 0).
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The obtained treatment differences are used in the second stage of the VT method as the outcome variables
for a simple regression tree with the goal of identifying a subgroup, where z(𝐱i) is expected to be larger
than a clinically meaningful threshold denoted by 𝛿. The final subgroup is formed as the union of all
terminal nodes of the tree where the predicted treatment differences are greater than 𝛿. We will provide
a more detailed account of this method in Section 6.4 and apply it to Case study 1 in Section 10.3.

Hybrid strategies for subgroup identification that combine parametric and non-parametric (e.g., tree
based) models were also proposed in the literature. For example, Dusseldorp et al. [45] proposed a method
called simultaneous threshold interaction modeling algorithm (STIMA), which represents a combination
of a linear multiple regression model for modeling the main effects and a tree for modeling the higher-
order interaction effects. The first step of the algorithm involves fitting a linear model for the main effects
with the treatment arms combined. After that the experimental treatment and control arms are analyzed
separately, and the algorithm proceeds by splitting on the remaining covariates. The goal is to identify
the best split by examining all candidate splits within each terminal node and choosing the split that
maximizes the increase in the variance accounted for by the current model. Each new split is captured by
a new interaction term, which is added to the overall regression model, and all regression coefficients are
re-estimated. This procedure is repeated in a sequential manner until a pre-defined stopping condition is
met, which results in generating a sequence of regression models of increasing complexity. An optimal
model and corresponding tree structure can be selected using CV.

Bayesian methods for subgroup identification within the global outcome modeling framework typically
focus on applying empirical Bayes or fully Bayesian methods to complex regression models with terms
involving biomarker-by-treatment interactions (e.g., [46–48]).

It is important to note that frequentist methods for penalized regression discussed earlier in this section
have a natural Bayesian interpretation. The penalty function corresponds to specific prior distributions
placed on the model coefficients; for example, the ridge penalty corresponds to normal priors centered at
zero, and the lasso penalty corresponds to Laplace priors centered at zero. The penalty factor is inversely
related to the variance of the prior distribution and a larger penalty indicates a stronger belief that a
particular model parameter is equal to zero. Other proposals for priors include Student’s t-distribution,
which is an intermediate case between the Gaussian and Laplace distributions [49].

‘Fully Bayesian’ penalized regression methods [50] were also adapted to the context of biomarker eval-
uation. These methods place a hyper-prior on the penalty parameter in the spirit of hierarchical Bayesian
models. It is instructive to contrast the fully Bayesian approach with the frequentist penalized regres-
sion discussed in Section 6.2. While the frequentist or empirical Bayes approaches focus on selecting
a single value of the penalty parameter by CV or other criteria, the fully Bayesian approach empha-
sizes the process of averaging multiple penalized regressions with different penalties sampled from their
posterior distribution. Gu et al. [51] proposed a two-step biomarker selection strategy in the context of
time-to-event outcomes based on the Bayesian lasso regression. At the first step, the procedure utilizes
the grouped lasso penalty to select potentially relevant biomarkers (grouped with their treatment interac-
tions), and at the second step, a Bayesian adaptive lasso is applied to refine the variable selection among
biomarkers identified in the first step. In addition, non-parametric Bayesian regression methods were
considered in the literature. For example, Xu et al. [8] proposed a Bayesian non-parametric procedure
known as the SUBA procedure, which utilizes a random partition model generated via random splits on
candidate biomarkers and is similar in spirit to Bayesian regression trees, for example, Bayesian CART
developed by Chipman et al. [52].

It is worth noting that biomarkers may be used to define patient subgroups indirectly, for example,
by affecting the probability of subgroup membership, rather than by directly defining covariate-based
scores or signatures and associated thresholds. For example, Shen and He [53] proposed a latent logistic-
normal mixture where the outcome is modeled via a linear model incorporating an interaction between
the treatment and a latent subgroup variable. The subgroup membership probabilities are modeled using
a logistic regression model with pre-selected biomarkers as covariates. The analysis includes testing the
hypothesis of no subgroup effect and evaluating pre-selected biomarkers (if the former hypothesis is
rejected) within a single analytic procedure. As a limitation, such models can not handle selection from
a large set of candidate biomarkers.

6.2. Penalized regression for global outcome modeling

We begin with a brief description of the general framework of penalized regression for estimating the
expected outcome function f (𝐱), that is, the expected patient’s response given the covariate vector 𝐱. Here,
to simplify notation, we assume that the covariate vector includes, in addition to candidate covariates,
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the treatment indicator as well as all other relevant variables (or ‘data features’) that may have been
created by applying appropriate transformations to the input variables, for example, interaction effects.
The motivation behind penalized regression came from different areas of statistical research and evolves
around the two goals:

• constructing stable and accurate predictive models in problems with a large number of (often highly
correlated) covariates; and

• selecting variables (simultaneously with parameter estimation) to define a parsimonious and inter-
pretable regression model.

Although the objectives of ‘prediction’ and ‘interpretation’ may be considered somewhat conflicting,
they can be tackled under a unifying framework of penalized regression, which became a major building
block for a multitude of related methods.

Within a class of parametric regression models, the expected response for the ith patient, i = 1,… , n,
is a function of the vector of pre-specified covariates 𝐱i = (xi1,… , xip) with the vector of model param-
eters/regression coefficients denoted by 𝜷 = (𝛽0, 𝛽1,… , 𝛽p). The general goal of penalized regression
can be stated as estimation of the model parameters by minimizing an objective function. The objective
function is defined as a sum of the loss function, which measures the discrepancy between the observed
outcome and expected response, and penalty function, which depends on the absolute values of the model
parameters. In other words, we seek 𝜷 such that

𝜷 = argmin
𝜷

(
n∑

i=1

L(yi, f (𝐱i|𝜷)) + J𝝀(𝜷)

)
,

where L(Y , f (𝐗)) is the loss function, J𝝀(𝜷) is the penalty function, and 𝝀 is the penalty parameter (or, in
general, a vector of parameters).

While the loss function rewards regression models that closely approximate the observed response
(leading to a smaller bias), the penalty term rewards parsimonious models with fewer and smaller coef-
ficients (leading to a smaller prediction variance). The penalty parameter 𝜆 is a tuning parameter that
controls the relative importance of the two conflicting goals. With 𝜆 = 0, the penalty term vanishes,
and when 𝜆 = ∞, the coefficients are all shrunk to 0. Therefore, penalty parameters support a balance
between the model fit and model complexity via a bias-variance trade-off.

Different types of penalized regression can be constructed by specifying the three major ‘building
blocks’:

• Specifying the form of the loss function L(Y , f (𝐗)), which naturally depends on the outcome type
(continuous, binary, time-to-event, etc). The squared-error loss function, that is, L(Y , f (𝐗)) = (Y −
f (𝐗))2 , is probably the most common choice. This function is used in least-squares estimation for
continuous outcomes.

• Specifying the penalty function J𝝀(𝜷). For example, the ridge penalty [54] places a penalty on the
sum of squares of the regression coefficients, J𝜆(𝜷) = 𝜆

∑p
j=1 𝛽

2
j .

• Specifying a class of parametric functions f (𝐗|𝜷) to approximate the unknown expected response
f (𝐗). An example is a linear regression, which is defined by f (𝐗|𝜷) = 𝛽0 +

∑p
j=1 𝛽jXj.

For the rest of our discussion of penalized regression, we will assume that the outcome variable is
binary. We will adopt a coding convention commonly used in statistical/machine learning literature,
namely, the binary outcomes will be coded as−1 (negative outcome) and+1 (positive/desirable outcome),
rather than 0 and 1, unless stated otherwise.

Hastie et al. [55] discuss a variety of loss functions for regression models with binary outcomes. The
following two loss functions will be considered in this section:

• binomial deviance loss: L(Y , f (𝐗)) = log(1 + exp(−Yf (𝐗)); and
• hinge loss: L(Y , f (𝐗)) = [1 − Yf (𝐗)]+, where [a]+ = max(0, a).

The first loss function is easily recognized as the familiar binomial (negative) likelihood. This loss
function is used in penalized logistic regression models. The function that minimizes this loss function
over the entire population, that is, the expectation of the loss is computed with respect to y, is termed a
population minimizer. This function is given by the logit of the response probability, that is,
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log
P(Y = +1|𝐗)
P(Y = −1|𝐗) .

The hinge loss is less familiar to the statistical community. This loss function is used in SVMs, which
is one of the popular methods used in classification [56]. Here, the decision boundary is estimated as all
such points 𝐱 that f̂ (𝐱) = 0 and a SVM classifies a point to the classes {Y = −1} and {Y = +1} depending
on which side of the boundary it is. The hinge loss combined with the ridge penalty leads to boundaries
that maximize the width of the margin between the two classes {Y = −1} and {Y = +1} defined by its
two ‘soft’ boundaries: {

𝐱 ∶ f̂ (𝐱) = −1
}

and
{
𝐱 ∶ f̂ (𝐱) = +1

}
.

Intuitively, a wider margin between the two classes achieved on the training data not only means bet-
ter discrimination between the patients with positive and negative outcomes but also suggests that the
classification rule should work well on the new (test) data.

Popular penalties used in general penalized regression models include

• ridge or l2 penalty: J𝜆(𝜷) = 𝜆
∑p

j=1 𝛽
2
j , 𝜆 > 0;

• lasso or l1 penalty (Tibshirani [37]): J𝜆(𝜷) = 𝜆
∑p

j=1 |𝛽j|, 𝜆 > 0; and
• elastic net penalty (compromise between the l1 and l2 penalties [57]):

J𝝀(𝜷) = 𝜆1

p∑
j=1

|𝛽j| + 𝜆2

p∑
j=1

𝛽2
j ,

where 𝜆1 = 𝜆𝛼, 𝜆2 = 𝜆(1 − 𝛼)∕2, 0 ⩽ 𝛼 ⩽ 1 and 𝜆 > 0.

Different penalties would result in different features of the estimated model. The ridge penalty causes
the regression coefficients and correlations among the covariates to shrink towards 0 by a scale factor
of 1∕(1 + 𝜆). This leads to ‘decorrelating’ the data, and as 𝜆 → ∞, the regression coefficients begin to
behave like univariate Ordinary Least Squares (OLS) coefficients scaled down by a factor of 1∕(1 + 𝜆).
Generally, the ridge penalty has the effect of averaging across correlated variables.

The lasso penalty also shrinks the regression coefficients towards zero, but unlike the ridge penalty,
it shrinks some of the coefficients exactly to zero. This means that parameter estimation is performed
simultaneously with automatic variable selection. The lasso penalty is called a ‘sparse penalty’ as it
enforces sparsity in the estimated coefficients. It is often argued that this ‘bet on sparsity’ is a reasonable
strategy, especially when the covariate space is very large compared with the sample size (p > n), because
it works well when the ‘truth’ is sparse (i.e., most coefficients are indeed equal to zero), and if it is not,
there is no method to accurately estimate all of the coefficients anyway. The lasso penalty can be thought
of as a less greedy forward variable selection method, which is closely related to least angle regression
introduced in [58]. One deficiency of the lasso is that, given a set of highly correlated covariates, it
arbitrarily selects only one of them. The elastic net penalty was developed as an attempt to remove this
undesirable feature. This penalty function combines the decorrelation property of the ridge penalty with
the variable selection property of the lasso penalty. Several other important variations and improvements
on the lasso method that can also be applied more generally to the elastic net have been developed recently,
including the fused lasso [59], adaptive lasso [60], and grouped lasso [61].

A natural approach to selecting the penalty parameter(s) is to try different values within a plausi-
ble range and evaluate the performance of the resulting model using an independent dataset or via CV.
The parameter corresponding to the smallest CV error is chosen, or alternatively, the ‘minCV+1SE’ rule
(Section 5.3) can be applied. Fortunately, for many penalized regression methods, for example, for the
lasso [58] and some versions of SVM [62], it was shown that the estimated coefficient or regularization
paths, 𝛽j(𝜆), j = 1,… , p, are piecewise linear. Efficient procedures were developed to compute the entire
regularization path 𝛽j(𝜆) with the computational effort of a single least-squares fit [63]. Recently devel-
oped algorithms based on cyclic coordinate descent allowed computing entire regularization paths for
more general classes of loss functions and penalties, covering ridge regression, elastic net penalties com-
bined with many types of different loss functions encountered in generalized linear models [64]. These
algorithms are used in the r package glmnet.

Once the regularization path has been computed, the optimal value of 𝜆 for ‘variable selection’ penal-
ties such as the lasso and elastic net can then be found by examining only a few ‘critical’ or ‘transition’
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values of 𝜆 along the path when some of the coefficients approach zero, which means that the associated
covariates are unselected.

Finally, we can choose among different classes of regression functions to approximate the expected
response f (𝐱). The idea is that the selected class of functions should be rich enough to contain the true
function and allow for a variety of fits from very simple fits to very complex fits. One should not be
afraid to include very complex functions because the penalty term, which plays the role of a ‘constraint
jacket’, is likely to reduce the model complexity. Such ‘expansion’ of the covariate space (also known as
the feature space), which is subsequently shrunk to the right size, is one of the key conceptual elements
of statistical and machine learning (Sections 5.3 and 6.4). This approach reflects our lack of knowledge
of the precise functional form of the true response function.

As a popular approach, functions of interest may be defined as linear expansions of basis functions [55]
denoted by h1(𝐗),… , hm(𝐗), for example,

f (𝐗|𝜷) = 𝛽0 +
m∑

j=1

𝛽jhj(𝐗).

The basis functions could be specified explicitly, fr example, as the spline basis functions for each
covariate, or implicitly by defining the so-called kernel functions [65]. Note that the basis functions could
simply represent the original p covariates, that is, hj(𝐗) = Xj, j = 1,… , p.

Returning to the problem of subgroup identification, note that the response function f (𝐗) also depends
on the treatment assignment T , that is, f (𝐗) = f (𝐗,T). When selecting the functional form of f (𝐗,T),
it is natural to focus on the feature space that includes all of the candidate covariates, their two-way
interactions as well as all two-way and three-way interactions of covariates with the treatment variable.
The main effects of the covariates and their interactions can be modeled via different functional forms by
applying appropriate transformations, including power functions, piecewise polynomials, and splines.

To illustrate the general penalized regression methodology presented previously, we fitted logistic
regression models with the binomial deviance loss function and lasso penalty to a slightly modified ver-
sion of the simulated dataset from Section 5.1, which was generated based on the outcome model (1).
The original continuous outcome was converted into a binary outcome by letting Y = +1 if Y∗ > c and
Y = −1 otherwise (Y∗ is the original outcome, +1 denotes the desirable outcome, and c is a constant). To
make this exercise more challenging, the original set of covariates, that is, X1 and X2, was extended by
including 10 noise variables X3,… ,X12 generated independently of each other from the standard normal
distribution, that is, N(0, 1). Note that the analyst does not know that these covariates are irrelevant. The
resulting true model for the binary outcome was given by

y∗i = 2x1i + 3x2i + I(x1i ⩽ 0.5)I(x2i ⩽ 0.5)ti + 𝜀i,

yi = 2I
(
y∗i > c

)
− 1,

(2)

where x1i and x2i were independently simulated as U(0, 1) and 𝜀i followed N(0, 1), i = 1,… , n. The
constant c was set to the expected value of the original outcome variable, that is, c = E(Y∗) = 2.75.

The observed treatment differences in the probability of a desirable outcome (Y = 1) in the simu-
lated dataset within selected subgroups are shown in Table V. As intended, the largest positive treatment
effect is concentrated in the left upper cell corresponding to the true subgroup, that is, S = {X1 ⩽ 0.5
and X2 ⩽ 0.5}.

The feature space included the following variables:

• treatment indicator, T;
• all candidate covariates X1,… ,X12;
• two-way covariate interactions, including the squared covariates, that is, XiXj, X2

i , i = 1,… , 12,
j = 1,… , 12; and

Table V. Average treatment differences within
the key subgroups and overall population (OP) in
the simulated dataset (binary outcome).

Subgroup {X1 ⩽ 0.5} {X1 > 0.5} OP

{X2 ⩽ 0.5} 0.315 0.019 0.161
{X2 > 0.5} −0.428 0.021 −0.162
OP −0.074 0.017 −0.01
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• interactions of the covariates and two-way covariate interactions with the treatment indicator, i.e.,
XiT , XiXjT , X2

i T , i = 1,… , 12, j = 1,… , 12.

The expanded covariate space consisted of a total of 181 variables, which was comparable with the
total sample size of n = 200 patients. Note that all covariates, including the treatment indicator, were
first standardized to have zero means and unit standard deviations. The interaction terms were computed
based on the standardized input variables, and the lasso procedure from the glmnet package was run with
no internal standardization (i.e., standardize=FALSE). This method of standardization is similar to
the approach suggested in [49].

Figure 5 shows the coefficient paths as a function of the log-transformed penalty parameter 𝜆. The
paths for the influential variables in the model, that is, the main effects (X1 and X2) and predictive effects
(X1X2T , X1T and X2T), are shown as black curves, whereas the other paths are shown as gray curves in
Figure 5. The procedure used a fast method of cyclical coordinate descent for fitting the entire lasso (and,
more generally, elastic net) coefficient path for logistic regression. It follows from Figure 5 that the paths
were indeed piecewise linear. As 𝜆 increased, the coefficients for most irrelevant covariates and their
interactions were quickly shrunk down to zero. The figure suggests that a key component of penalized
regression is the selection of an optimal value of the penalty parameter. The two horizontal lines indicate
reasonable values of 𝜆 that were selected via CV, as explained in the succeeding discussion.

Figure 6 presents a cross-validated negative log-likelihood with associated standard errors as a function
of the log-transformed penalty parameter 𝜆. The cross-validated negative log-likelihood was computed
as follows. First, the dataset was randomly divided into k = 10 sets (folds). For all patients in the lth

Figure 5. Lasso coefficient paths in the simulated dataset with 181 covariates. The vertical lines are drawn at 𝜆min
(left line) and 𝜆min1se (right line).

Figure 6. Ten-fold cross-validated negative log likelihood (binomial deviance) as a function of the log-
transformed penalty parameter 𝜆. The two vertical lines correspond to 𝜆min (left line) and 𝜆min1se (right line). The
error bars are based on the standard errors. The values shown in the upper horizontal axis are the numbers of

non-zero coefficients resulting when the penalty (log(𝜆)) is set at values shown in the lower horizontal axis.
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fold (i.e., i ∈ Fl), CV estimates were found from the penalized regression fit to the data with the lth
fold removed, and the corresponding coefficient paths, denoted by 𝛽j(−l)(𝜆), were estimated. The cross-
validated probability of the desirable outcome for a patient within the lth fold was computed using the
inverse logit as follows:

p̂CV
i (𝜆) = 1

1 + exp
[
−1
(
𝛽0(−l) +

∑p
j=1 𝛽j(−l)(𝜆)xij

)] , i ∈ Fl.

The contribution of the ith patient to the CV-based negative log-likelihood function was given by

LCV
i (𝜆) = −1

2

[
(1 + yi)p̂CV

i (𝜆) + (1 − yi)
(
1 − p̂CV

i (𝜆)
)]

.

This contribution reflects the probability of the desirable outcome predicted from the regression model
with a particular value of the penalty parameter, which was constructed by removing the fold to which
the ith patient was assigned. The overall cross-validated profile was defined as a function of the penalty
parameter 𝜆 by averaging the patient-specific contributions, that is,

LCV (𝜆) = 1
n

n∑
i=1

LCV
i (𝜆).

Optimal values of 𝜆 were determined using the following two criteria based on the CV likelihood:

• 𝜆min was found by minimizing the overall cross-validated negative log-likelihood profile.
• 𝜆min1se was selected using the ‘minCV +1SE rule’ rule. Specifically, 𝜆min1se was defined as the largest
𝜆 such that LCV (𝜆) is equal to LCV (𝜆min)+SE, where SE denotes the associated standard error, which
was computed simply as the standard deviation of the average cross-validated negative likelihood
across the k folds. This approach corresponds to the notion of choosing the simplest model within
the ‘chance variability’ from the model with the smallest negative log-likelihood. Note that a larger
penalty, if anything, would result in setting more coefficients to zero.

It is instructive to examine the non-zero parameters in the regression model corresponding to the two
optimal values of the penalty parameter. The terms with non-zero coefficients are listed in Table VI.

It is interesting that only two terms (X1 and X2) had non-zero coefficients when the penalty parame-
ter was set to 𝜆min1se, which means that none of the predictive variables survived such a harsh penalty.

Table VI. Penalized logistic regression models with the lasso penalty based on 𝜆min and
𝜆min1se in the simulated data example.

Estimated regression coefficient

Selected model term Based on 𝜆 = 𝜆min Based on 𝜆 = 𝜆min1se Effect type

X2 0.795 0.541 Prognostic (true)
X1 0.430 0.199 Prognostic (true)

X1X2T 0.127 0 Predictive (true)

X1X2 0.117 0 Prognostic (true)

X5X6T 0.098 0 Predictive (noise)

X2T −0.046 0 Predictive (true)

X1X6 0.038 0 Prognostic (partially noise)

X2
4 0.037 0 Prognostic (noise)

X9T 0.033 0 Predictive (noise)

X2
7 −0.030 0 Prognostic (noise)

X2
9T −0.026 0 Predictive (noise)

X4X11T 0.016 0 Predictive (noise)

X3X8T 0.014 0 Predictive (noise)

X2X6 −0.006 0 Prognostic (partially noise)

X2
10T −0.00005 0 Predictive (noise)
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Considering now the regression model corresponding to less severe penalty 𝜆min, the model terms with
non-zero coefficients included the relevant predictive effects X1X2T and X2T as well as the covariate and
treatment-covariate interactions that involved the irrelevant (noise) effects. In general, the coefficients for
the terms involving the noise covariates were smaller in magnitude than those for the terms included in
the correct model, with the exception of the coefficient for the noise effect X5X6T that was comparable
in magnitude with that for the true predictive effects. Note that the true predictive effect in the model
is defined using the indicator function I(X1 ⩽ 0.5)I(X2 ⩽ 0.5), which is quite challenging to recover
within this model’s feature space. As we see from Table VI, it is approximated (rather crudely) by a lin-
ear combination of the true predictive effects and a few noise effects. Because the covariates were first
standardized, the predictive combination (or treatment difference score) was essentially based on(

0.127
X1 − 0.50

0.29

X2 − 0.49

0.29
− 0.046

X2 − 0.49

0.29

)
T − 0.5

0.50
+ noise effects.

To evaluate the performance of the lasso approximation, the treatment effects can be estimated within
the true subgroup S = {X1 ⩽ 0.5 and X2 ⩽ 0.5}. The individual treatment contrasts can be easily esti-
mated from a selected penalized regression model using the predict function in the glmnet package.
First, the penalty parameter is set to 𝜆min, and the predicted values are computed on a probability scale
for a ‘new’ dataset with the same covariates X1,… ,X12 as in the original dataset, the treatment indica-
tor variable set to (1 − 0.5)∕0.5 = 1 for all patients and the treatment-by-covariate interactions updated
accordingly. This leads to the estimated probability of yi = 1 if the ith patient is assigned to the treat-
ment arm. Similarly, by setting the treatment indicator variable to (0 − 0.5)∕0.5 = −1, the probability
yi = 1 can be estimated in the case when the ith patient is assigned to the control arm. The patient-level
treatment contrast z(𝐱) is then computed as the difference between the predicted probabilities for the two
potential outcomes:

ẑ(𝐱) =
exp
[
f̂
(
𝐱, 1|𝜷(𝜆))]

1 + exp
[
f̂
(
𝐱, 1|𝜷(𝜆))] −

exp
[
f̂
(
𝐱, 0|𝜷(𝜆))]

1 + exp
[
f̂
(
𝐱, 0|𝜷(𝜆))] ,

where f̂ (𝐱, t|𝜷(𝜆)) is the logit of the probability of Y = 1, given the covariate vector 𝐗 = 𝐱 and treatment
T = t, estimated using penalized logistic regression. Finally, the estimated values of z(𝐱) are averaged
for the patients within the true subgroup, which results in an estimate of the expected treatment effect in
the subgroup, that is, E(z(𝐗)|𝐗 ∈ S). This estimate is equal to 0.0325, which, although positive, is far
below the observed value of 0.315 shown in Table V.

In general, there is a great deal of uncertainty around the selection of the ‘correct’ value of the penalty
parameter 𝜆. However, even if a suboptimal value of 𝜆 is chosen, for example, 𝜆min is selected in this
particular example, the terms involving irrelevant covariates will cancel out when the individual treatment
contrasts are computed as long as they do not involve interactions with the treatment indicator (which is
unfortunately not the case in the example discussed previously). Note that this desirable effect does not
happen when we evaluate treatment contrasts on the probability scale, which is a nonlinear transformation
of the estimated f (𝐗,T). Therefore, operating on the logit scale adds extra protection against bias when
evaluating treatment contrasts.

6.3. FindIt method

It was shown in Section 6.2 that general penalized regression methods can be used for the purpose of
evaluating predictive biomarkers and patient subgroups with a differential treatment effect. This section
presents a recently proposed variation on the penalized regression methodology, known as the FindIt
method, which was specifically adopted for personalized medicine settings [38]. An explicit notation for
the outcome function that separates the covariates and treatment indicator, that is, f (𝐗,T), will be used
in this section.

The FindIt method extends the penalized regression framework by selecting the following components
of a general penalized regression method:

• The squared hinge loss, termed the squared loss support vector machine (L2-SVM) loss, was selected
(note that L2 refers to the loss function rather than the penalty). Imai and Ratkovic [38] argued
for L2-SVM ‘because it returns the standard difference-in-means estimate for the treatment effect
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in the absence of pre-treatment covariates’ similarly to the ordinary least squares regression. The
‘population minimizer’ of the hinge loss, that is, the function f (𝐗, T), which minimizes the expected
loss with the expectation taken over Y|𝐗,T , is given by

sign(2P(Y = +1|𝐗,T) − 1),

which merely returns the predicted class label for each observation. On the other hand, the population
minimizer for the squared hinge loss is f (𝐗) = 2P(Y = +1|𝐗,T) − 1 (table 12.1 in [55]), which,
as we will see, enables computing the treatment contrast on the probability scale using the SVM
estimator of f (𝐗, T).

• Penalty function is the lasso penalty (l1 penalty), but two separate penalty parameters are introduced
for the covariates and their interactions (combined in the matrix 𝐔) that represent the prognostic
effects, the treatment–covariate interactions (combined in the matrix 𝐕) that represent the predictive
effects and the treatment indicator.

• The expected response f (𝐗,T|𝜷) is modeled as a linear function with the covariate space defined by
the ‘prognostic effects’ (𝐔) and ‘predictive effects’ plus the treatment indicator (𝐕). The parameter
space is 𝜷 = (𝛽0, 𝜷

(u), 𝜷(v)), where the length of the vectors 𝜷 (u) and 𝜷(v) is pu and pv, respectively.

The proposed penalty function is given by

J𝝀(𝜷) = 𝜆u

pu∑
j=1

|||𝛽(u)j
||| + 𝜆v

pv∑
j=1

|||𝛽(v)j
||| .

The two penalty parameters 𝜆u and 𝜆v are needed to ensure that variable selection is performed separately
for the prognostic (𝐔) and predictive (𝐕) effects. Different penalties can be justified by the fact that
prognostic factors tend to have much stronger effects than predictive factors and therefore may dominate
the fit if a single penalty is used.

The selection of optimal values for the penalty parameters is based on the generalized cross-validation
(GCV) criterion (Wahba [65]), which is justified as an approximation to the leave-one-out CV for linear
models under the squared-error loss function. The GCV is evaluated as a function of (𝜆u, 𝜆v), and the
parameter values associated with the smallest GCV are selected.

As we already mentioned, one deficiency of SVM with the hinge loss is that, unlike logistic regression,
it does not return an estimated probability of the desirable outcome (Y = +1). This could be viewed
as a very significant limitation for this particular application because one is specifically interested in
computing the individual treatment contrasts z(𝐗). Because the population minimizer of the squared
hinge loss is 2P(Y = +1|𝐗, T) − 1, the probabilities can be recovered from the fitted values by a simple
transformation after truncating the values outside the [−1, 1] interval. This leads to the proposed solution
for computing the treatment contrasts for a given vector of covariates, termed the conditional average
treatment effect. Specifically, the predicted potential outcomes are first truncated at +1 and −1, and then
the individual treatment contrasts are computed as

ẑi =
1
2

[
f̂tr(𝐱i, 1) − f̂tr(𝐱i, 0)

]
,

where f̂tr denotes the predicted value of the outcome function within [−1, 1].
To illustrate the FindIt method, it was applied to the simulated dataset used in Section 5.1 with the

continuous outcome converted to a binary outcome as in (2). The calculations were performed using the
r package FindIt.

Recall from Section 6.2 that 90 variables in the feature space were prognostic and the remaining 91 vari-
ables included the treatment indicator and thus exhibited predictive properties, which means that pu = 90
and pv = 91. The optimal values of the penalty parameters for the prognostic and predictive variables
(𝜆u and 𝜆v) were determined using the GCV criterion. The resulting logistic regression model included
only 10 terms with non-zero coefficients. The estimated non-zero coefficients are listed in Table VII in
the decreasing order of magnitude. Remarkably, the largest coefficient was associated with the true inter-
action effect X1X2T . As in the logistic regression model with a single lasso penalty (Table VI), the noise
interaction effect X5X6T was also selected. A potential advantage of using two separate penalties is that
the coefficients associated with the true predictive effects and average treatment effects in patient sub-
groups can be estimated more accurately. This feature would make the FindIt method more attractive for
selecting predictive covariates compared with standard penalized regression approaches. Unfortunately,
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Table VII. Penalized logistic regression model based on the FindIt method in the simu-
lated data example with 𝜆u and 𝜆v selected by the generalized cross-validation criterion.

Selected model term Estimated regression coefficient Effect type

X1X2T 1.120 Predictive (true)
X2 0.580 Prognostic (true)
X1 0.308 Prognostic (true)
X2X6T −0.084 Predictive (partially noise)

X5X6T 0.052 Predictive (noise)

X10X12T 0.037 Predictive (noise)

X2
9T −0.009 Predictive (noise)

T −0.009 Treatment indicator
X2

7T −0.008 Predictive (noise)

X2
4 0.008 Prognostic (noise)

these potential advantages of FindIt were not seen in this particular simulation example. The predicted
effect in the true subgroup S = {X1 ⩽ 0.5 and X2 ⩽ 0.5} based on the estimates from Table VII were far
below the observed values shown in Table V.

A natural question to ask at this point is, how should one define subgroups of patients who are likely
to experience a beneficial treatment effect based on penalized regression methods? One possible solution
is to plot the estimated treatment contrasts ẑi against the covariates with non-zero coefficients to identify
reasonable cutoff values that translate into clinically interpretable subgroups. The resulting subgroups
will be easier to communicate to the patient matter experts than the results of variable selection. This
approach will be illustrated in the next section.

6.4. Virtual twins

This section provides a detailed description of the VT method [43]. This method combines, as its building
blocks, basic elements that may be utilized in other subgroup identification approaches.

As was explained earlier in this section, VT is a two-stage procedure. The first stage involves estimating
the underlying regression function f (𝐗,T) and the individual treatment contrast for each patient, that is,
ẑi = f̂ (𝐱i, 1) − f̂ (𝐱i, 0). At the second stage, subgroups are identified by fitting a regression tree to ẑi or
a classification tree to the binary outcomes based on dichotomizing ẑi. Note that Foster et al. [43] only
considered the setting with a binary outcome; however, their methodology can be extended to other types
of outcomes.

Consider a clinical trial with a binary outcome variable Y (Y = 0 or 1) and assume that Y = 1 represents
a desirable outcome. In this case, f (𝐱, t) denotes the conditional probability of the desirable outcome
given the vector of patient’s covariates 𝐗 = 𝐱 and assigned treatment T = t. To estimate the underlying
response function, Foster et al. [43] proposed to use random forests, although other methods of ensemble
regression such as gradient boosting [64, 66] or Bayesian ensemble learning [67] can also be applied.

Random forest is an example of a ‘black box’ method where the resulting statistical ‘model’ cannot
be expressed as a simple data-generating mechanism. Individual predictions from a random forest are
obtained by averaging across predictions from many large (unpruned) trees grown by applying the CART
method to multiple bootstrap samples of the original data. Each tree from the forest partitions the covariate
space into non-overlapping regions and any particular patient is allocated to only one region based on his
or her covariates. The final prediction from the forest for a patient with the covariate vector 𝐱 is defined
as the average of the predicted values across all the trees. Although predictions from each overgrown tree
are unstable because of overfitting (exhibiting high variance and low bias), averaging across trees results
in a substantial reduction in the prediction variance while retaining low bias. As a result, a random forest
model may achieve a good trade-off between variance and bias and does not overfit the data.

To make averaging across trees even more efficient (in terms of reducing the prediction variance), an
additional source of randomness is incorporated in the tree construction procedure. Specifically, when
growing individual trees from bootstrap samples, the CART algorithm is modified so that the best split-
ting covariate is selected at each decision node from a random sample of m out of p candidate covariates
(the covariates are sampled anew for each selection). The resulting trees become more diverse, which
leads to a reduction in the correlations across the trees and a smaller prediction variance of the ensemble.
Adding this feature actually distinguishes random forests from their precursor, namely, the bagging
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method, which is essentially a random forest without random variable selection. The random forest pro-
cedure can be easily automated as it is essentially controlled by only two tuning parameters: the number
of trees (bootstrap samples) and the proportion m∕p of covariates sampled at each node. Reasonable
default values for the tuning parameters are available and implemented in the r package randomForest.

Returning to the VT method, the individual treatment contrasts can be computed in the first stage on
the original scale, that is,

zi = f̂ (𝐱i, 1) − f̂ (𝐱i, 0),

or on the logit scale,

zi = logit̂f (𝐱i, 1) − logit̂f (𝐱i, 0),

where

f (𝐱i, 1) = P(Y = 1|𝐗 = 𝐱i,T = 1), f (𝐱i, 0) = P(Y = 1|𝐗 = 𝐱i,T = 0).

At the second stage, these estimated contrasts are used as ‘observed’ values of the response variable
for growing a regression tree. The goal of this stage is to identify a patient subgroup S, where each
treatment contrast is expected to be greater than a pre-specified clinically meaningful threshold denoted
by 𝛿. To prevent data overfitting, the tree size in CART is controlled using cost-complexity pruning with
the complexity parameter selected via CV. The regression tree is fitted to the z’s to obtain predictions
denoted by ẑ. Note that the predicted outcome for a patient within a certain terminal node R is simply the
average outcome value for the region associated with that node, that is,

ẑ(R) = 1|R| ∑
j∈R

zj.

This is a standard approach for making predictions with trees as piecewise-constant models. The final
subgroup Ŝ is formed as the union of the terminal nodes, where the predicted values, that is, ẑ(R), are
greater than 𝛿. The hat notation indicates that Ŝ is an estimate of the true subgroup of patients who
experience a beneficial treatment effect.

As an alternative approach (termed VTC), a classification tree may be fitted to the binary outcome
formed by dichotomizing the z’s, that is, to ui = I(zi > 𝛿). Then each terminal node r is classified into
one of the two outcome groups based on the ‘majority vote’ within the node:

û(R) = I

(
1|R| ∑

j∈R

uj ⩾ 0.5

)
.

The final subgroup Ŝ is defined as the union of the terminal nodes with the predicted outcome û(R) =
1. One may reasonably argue that introducing an additional layer of uncertainty by dichotomizing the
response variable may only result in sensitivity loss. Therefore, the VT method will be illustrated using
the regression tree method only.

One of the key issues in any subgroup identification method is the assessment of the treatment effect
within an estimated subgroup Ŝ. To quantify the enhanced treatment effect, Foster et al. [43] proposed
a measure of the treatment benefit denoted by Q(S). The treatment benefit is defined as the ‘excess’
treatment effect in the true subgroup S over the overall population effect:

Q(S) = {E(f (𝐗, 1)|𝐗 ∈ S) − E(f (𝐗, 0)|𝐗 ∈ S)} − {E(f (𝐗, 1)) − E(f (𝐗, 0))}, (3)

where the expectations are computed with respect to the covariate vector 𝐗.
Alternatively, we can write Q(S) in terms of the outcome variable Y as follows:

Q(S) = {E(Y|𝐗 ∈ S,T = 1) − E(Y|𝐗 ∈ S,T = 0)} − {E(Y|T = 1) − E(Y|T = 0}, (4)

where the expectations are evaluated with respect to the outcome variable Y and 𝐗.
Because the true subgroup S is unknown, the treatment benefit needs to be evaluated for the estimated

subgroup Ŝ, which is found using the VT method. In other words, the goal is to estimate Q(Ŝ). It is
tempting to simply use ‘plug-in’ estimates based on replacing the outcome function f () with its estimate
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f̂ () (obtained by the random forest method) in (3) and estimating the expectations in (3) and (4) using
sample averages. This leads to the following re-substitution estimators of Q(Ŝ):

Q̂(Ŝ) =
⎛⎜⎜⎝ 1|Ŝ| ∑i∶ xi∈Ŝ

f̂ (𝐱i, 1) −
1|Ŝ| ∑i∶ xi∈Ŝ

f̂ (𝐱i, 0)
⎞⎟⎟⎠ −
(

1
N

N∑
i=1

f̂ (𝐱i, 1) −
1
N

N∑
i=1

f̂ (𝐱i, 0)

)
(5)

Q̂(Ŝ) =
⎛⎜⎜⎝ 1|Ŝ1|

∑
i∶ xi∈Ŝ1

yi −
1|Ŝ0|

∑
i∶ xi∈Ŝ0

yi

⎞⎟⎟⎠ −
(

1
N1

∑
i∶ ti=1

yi −
1

N0

∑
i∶ ti=0

yi

)
, (6)

where Ŝ0 and Ŝ1 denote the subsets of untreated and treated patients from the subgroup Ŝ. Further, N0
and N1 denote the total sample sizes in the control and treatment arms, respectively, and N is the total
sample size.

The re-substitution estimate (5) will be termed a model-based estimate and (6) a data-based estimate.
In addition, one can consider an ‘intermediate’ method where the treatment effect is estimated as in (6) by
contrasting the average outcomes between the two study arms; however, the actual outcomes are replaced
with the predicted values computed from the model [43]. This approach is different from (5), where the
potential treatment differences are computed and averaged over both study arms:

Q̂(Ŝ) =
⎛⎜⎜⎝ 1|Ŝ1|

∑
i∶ xi∈Ŝ1

f̂ (𝐱i, 1) −
1|Ŝ0|

∑
i∶ xi∈Ŝ0

f̂ (𝐱i, 0)
⎞⎟⎟⎠ −
(

1
N1

∑
i∶ ti=1

f̂ (𝐱i, 1) −
1

N0

∑
i∶ ti=0

f̂ (𝐱i, 0)

)
. (7)

Unfortunately, the three estimates given in (5)–(7) are all biased estimators for Q(Ŝ). To understand
why this is the case, recall that the subgroup Ŝ was estimated from the same dataset, which is now used
to compute the conditional expectations in (3) and (4) and therefore the basic re-substitution approach
will likely overestimate the subgroup treatment contrast:

E(f (𝐗, 1)|𝐗 ∈ S) − E(f (𝐗, 0)|𝐗 ∈ S) or E(Y|𝐗 ∈ S, T = 1) − E(Y|𝐗 ∈ S,T = 0).

This, in turn, will lead to a substantial optimistic bias in Q(Ŝ). This bias will be present despite the fact that
the subgroup Ŝ was selected from a reasonably pruned tree to prevent overfitting. While tree pruning via
CV or other methods may ensure that Ŝ is reasonably close to S, a separate validation dataset is generally
needed to obtain an unbiased or ‘honest’ estimate of the treatment effect in the selected subgroup. In
essence, to construct an unbiased estimate of Q(Ŝ), the expectations in (3) or (4) should be evaluated over
an independent dataset, which is typically unavailable.

To find a solution to this problem, several resampling-based approaches to computing bias-corrected
estimates of the treatment benefit Q(Ŝ) were proposed in [43]. These approaches were compared with
the naive re-substitution approach defined previously using simulations. In what follows, we will intro-
duce the bias-corrected estimate of Q(Ŝ) based on non-parametric bootstrap that was found to be most
promising in [43].

First, B bootstrap samples are generated from the original dataset using sampling with replacement
or other methods. Each bootstrap sample is processed using the same VT method as was applied to the
original data, and a subgroup Ŝb is identified along with the associated estimate Q̂b

(
Ŝb

)
. The subscript

b in Q̂b indicates that the Q-function in (3) or (4) is evaluated by taking the expectations over the data
from the bth bootstrap sample. In addition, an estimate of the Q function for the subgroup Ŝb, denoted by

Q̂
(

Ŝb

)
, is computed from the original dataset. The optimism bias of the naive re-substitution estimate

Q̂(Ŝ) is estimated in the bth bootstrap sample as follows:

Ob = Q̂b

(
Ŝb

)
− Q̂
(

Ŝb

)
.

Note that the subgroup Ŝb identified in the bth bootstrap sample may not (and likely would not) be the
same subgroup that was found on the training data, which may appear counterintuitive. Some would
argue that, to evaluate overoptimism associated with a specific subgroup Ŝ, we should rather evaluate this
subgroup in each bootstrap sample and compute the optimism bias as the difference in the Q-function for
Ŝ evaluated on training and bootstrap data:
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Õb = Q̂(Ŝ) − Q̂b(Ŝ).

This quantity, however, would not fully account for the subgroup search process, in particular, for fitting
a tree and selecting its terminal nodes to define the final subgroup in the second stage of the VT method.

The estimate of bias is found by averaging the bias estimates over the bootstrap samples, that is,

B̂ias = B−1
B∑

b=1

Ob,

and the bias-corrected estimate of the treatment benefit in the subgroup Ŝ is given by

Q̂cor(Ŝ) = Q̂(Ŝ) − B̂ias. (8)

The algorithm presented previously is similar to that used in the computation of bootstrap-based esti-
mates for assessing prediction errors. Using the original dataset as a ‘validation’ set against the bootstrap
sets has a caveat that most observations (≈ 63.24%) of the original data will be included in a bootstrap
sample when sampling with replacement (note that, based on simple random sampling with replacement,
there is a 1∕N chance that each individual observation will be selected in each draw, therefore, the prob-
ability that a given observation remains unselected after N draws is (1 − 1∕N)N ≈ e−1 ≈ 0.368). One
can then decide to use only a portion of the original dataset which was not included in a particular boot-
strap sample (about 36.8% of the data, termed ‘out-of-bag’ data) as a validation set. However, as it turns
out, this procedure also introduces bias, this time in the direction of pessimism. This occurs merely as
the consequence of reduced sample size; there are only about 63.2% of distinct observations from the
original training set that can be used in each bootstrap sample to build the model. Hence, the perfor-
mance assessed using a bootstrap-based approach should underestimate the performance expected when
the entire training dataset is used. To achieve a balance between the optimism bias and pessimism bias,
Efron [68] proposed (in the context of estimating prediction errors) to use a weighted average of the naive
re-substitution and ‘out-of-bag’ estimates with the weights 0.368 and 0.632, respectively. The resulting
estimate is known as the 0.632 estimator. The same idea can be applied to the bias-corrected estimate
derived previously, as suggested in [43]. Let Q̂−b(Ŝb) denote the Q function evaluated on the observa-
tions not included in the bth bootstrap sample for the subgroup Ŝb identified from that sample. The 0.632
estimator for Q(Ŝ) is defined as

Q̂0.632(Ŝ) = 0.368 Q̂(Ŝ) + 0.632
1
B

B∑
b=1

Q̂−b(Ŝb). (9)

In general, the reader should bear in mind that the estimators of Q(Ŝ) presented previously are heuristic
in nature and their validity should be assessed by simulation in each individual setting.

7. Global treatment effect modeling

Biomarker evaluation methods in this class are attractive in that they bypass the problem of estimating the
‘main effects’ in a model (or, in other words, identification of biomarkers with purely prognostic prop-
erties) and focus instead on estimating the treatment contrast, which is directly related to the assessment
of predictive biomarkers. As a result, global treatment effect modeling methods tend to be more robust
to model misspecification compared with the global outcome modeling methods discussed in Section 6.

Negassa et al. [69] and Su et al. [70, 71] proposed the interaction trees (IT) method for identifying
predictive biomarkers and associated subgroups of patients who are likely to experience a beneficial
treatment effect. This method essentially extends the CART methodology [33] discussed in Section 5.3.
Unlike regular tree-based approaches that fail to identify predictive biomarkers, IT incorporates a
treatment-by-split interaction in the splitting criterion. Consider, for example, a clinical trial with a con-
tinuous outcome variable. The classical CART algorithm will fit the following main effect model within
each parent node:

yi = a0 + a1si + 𝜀i,

where si is the indicator variable associated with a candidate split and then use the splitting criterion based
on reducing the error sum of squares due to the split. By contrast, the IT method utilizes the following
extended model:
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yi = a0 + a1si + a2ti + a3tisi + 𝜀i,

which includes the treatment-by-split-interaction term (tisi). The splitting criterion will be based on the
reduction in the error sum of squares because of this interaction term (more generally, a variety of statistics
for testing the hypothesis that the coefficient a3 associated with the treatment-by-split-interaction is equal
to zero can be considered to define the splitting criterion). Therefore, IT focuses on splits that make the
resulting child nodes more heterogeneous with respect to the treatment contrast z(𝐗), whereas CART
looks for splits that increase the heterogeneity with respect to the outcome function f (𝐗).

The IT method is similar to other nonparametric methods based on recursive partitioning in that it
supports subgroup identification within a very broad ‘model space’. The model space in recursive parti-
tioning consists of all possible configurations of selected covariates and associated cutoffs, for example,
a subgroup generated by an IT may be defined as

S(𝐗) = I{25 < X1 ⩽ 40, X2 = ‘Male’},
where X1 is the patient’s age and X2 is the patient’s gender.

Interaction trees classify all patients into a collection of the non-overlapping subgroups (terminal
nodes). Patients within the same terminal node experience a similar treatment benefit, which is typi-
cally represented within the subgroup by a single value (the estimated treatment contrast). Therefore, IT
provide a piecewise-constant fit for the underlying treatment effect z(𝐗). The IT methodology proposed
in [71] also includes complexity pruning, merging nodes with homogeneous treatment effects (amalgama-
tion algorithm), and evaluating variable importance (VI) scores via random forests. Section 7.1 provides
a more detailed description of the IT method, and Section 10.6 presents an application of this method to
Case study 2 with a time-to-event outcome.

Loh, He, and Man [72] recently proposed a novel recursive partitioning method for subgroup identifica-
tion within the GUIDE framework. GUIDE is a suite of tree-based procedures introduced in Loh [73] and
is different from CART and related methods such as the IT primarily in that it employs an unbiased vari-
able selection method. The selection bias in tree-based subgroup search methods arises because different
biomarkers have different sets of associated candidate splits, that is, cutoffs for continuous covariates or
subsets of levels for categorical covariates. Most existing tree-based procedures select the best split by
exhaustively cycling through all possible splits for each biomarker. As a result, a biomarker with a larger
set of possible cutoffs has an advantage over another biomarker with a smaller set of cutoffs in the sense
that the former is more likely to be selected by chance even if it is not associated with the outcome [23].
Instead of an exhaustive search, GUIDE implements a two-stage selection procedure. The procedure first
selects the best covariate using a simple univariate test statistic that is adjusted for the number of possi-
ble splits for a given covariate, and at the second stage, it determines the associated optimal split for the
covariate selected in the first stage.

It is worth noting that similar ideas, although developed within a different theoretical framework, were
employed in the conditional inference trees method by Hothorn et al. [24] and extended to a more general
setting of model-based recursive partitioning in [74]. This methodology is implemented in the r packages
party and MOB that were later subsumed in the more generic package partykit.

Like the IT method, the procedures proposed in [72] aim at constructing trees where terminal nodes
represent subgroups of patients with a homogeneous treatment effect. Consider, for example, the Gi
method that appears the most promising among several methods discussed in [72]. At the first stage, this
method uses a criterion that selects the covariate with the largest lack of fit test statistic in a regression
model that includes only the treatment and candidate covariate X (if X is ordinal or continuous, it needs
to be dichotomized at its mean value within the node considered for splitting). Because the treatment-by-
covariate interaction term is omitted from the model, larger values of the associated lack-of-fit statistic
can be attributed to the presence of a treatment-by-covariate interaction, which justifies selecting this par-
ticular covariate as a splitter with a high potential for predicting treatment effect. This variable selection
criterion is easily generalized to settings with multiple treatments and different types of outcomes. After
the best covariate X∗ has been chosen, the optimal cutoff is selected by minimizing the residual sum of
squares from the model that includes terms for the candidate cutoff (a binary variable), treatment, and
treatment-by-split interaction. Confidence intervals for the treatment differences within the subgroups
defined by the tree nodes are constructed using a bootstrap-based algorithm. The authors argue that good
performance and lack of ‘overoptimism’ in the treatment effect estimates within the subgroups identified
by this method can be explained by its ‘non-greedy’ nature, that is, unlike IT and related methods, Gi
does not try to directly maximize the treatment-by-split interaction or other functions of the treatment
effect in subgroups.
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Dusseldorp and Mechelen [75] recently introduced another tree-based algorithm for subgroup iden-
tification (known as QUINT) that specifically aims at recovering qualitative interactions. The goal is to
partition the overall patient population into regions (terminal nodes) of the following three types: (i) the
experimental treatment is sufficiently better than the control, (ii) the control is sufficiently better than
the experimental treatment, and (iii) all the rest. The algorithm sequentially finds an optimal split of
one of the current terminal nodes by maximizing a splitting criterion that contrasts the treatment effect
in the nodes of type 1 with that in the nodes of type 2 while also incorporating the associated sam-
ple sizes in the splitting criterion. The resulting full-grown tree is pruned to an optimal size using a
bootstrap-based procedure.

As an example of a parametric approach within this class of methods, consider a simple method for
estimating the individual treatment contrast z(𝐗) termed the modified covariate method [76]. Assuming a
continuous outcome variable and equal randomization to the treatment and control arms, Tian et al. [76]
observed that the treatment-by-covariate interaction effects can be fitted directly (without the need of
modeling the main effects) by simply defining the outcome variable as Z = 2T∗Y , where the treatment
indicator is defined as T∗ = 2T−1 ∈ {−1, 1}, and then regressing Z on 𝐗. This approach relies on the fact
that, under a 1:1 randomization, E(2T∗Y|𝐗 = 𝐱) = z(𝐱). However, under the squared loss function for a
continuous outcome, this is equivalent to fitting a model to the original outcome variable while multiply-
ing the (mean-centered) covariate vector by T∗∕2. Tian et al. [76] argued that this framework is easily
extended to different types of outcomes, for example, binary, count, and survival outcome variables, sup-
ports efficient estimation methods, and deals with high-dimensional data by regularization. This simple
approach produces a patient-specific predictive score, which can be used to stratify populations by the
expected treatment effect and identify subgroups of patients who experience treatment benefit or harm.

Bayesian subgroup analysis can also be performed within the global treatment effect modeling frame-
work. It focuses on modeling the data at the treatment contrast level rather than the treatment outcome
level. For example, Jones et al. [77] presented a general framework for Bayesian subgroup analysis, which
subsumes the models proposed in [46] and [47] as special cases. Within this framework, a hierarchical
Bayesian model is introduced for the treatment contrast in a candidate subgroup. The treatment effect is
shared by all patients within the subgroup (cell), and to simplify the notation, the subgroup and patient
indices will be dropped. The treatment effect, denoted by 𝜃, may be the mean difference, log-odds ratio,
log-hazard ratio, and so on. The subgroup effects defined by single covariates are modeled simply by
including their main effects, and subgroup effects defined by m covariates would require (m − 1)-order
interaction effects. As with any cell-mean modeling, this approach works best with a relatively small
number of biomarkers.

As an example, consider the process of modeling the treatment effect as a function of binary biomarkers
based on the patient’s age (X1), gender (X2), and race (X3). The resulting model for the treatment effect
in this subgroup is defined as the sum of the overall effect, subgroup effects of the three biomarkers and
associated second-order and third-order interactions as follows:

𝜃 = 𝜇 + 𝛾1I(X1 ⩽ 50) + 𝛾2I(X2 = ‘Male’) + 𝛾3I(X3 = ‘White’)
+ 𝛿1I(X1 ⩽ 50)I(X2 = ‘Male’) + 𝛿2I(X1 ⩽ 50)I(X3 = ‘White’)
+ 𝛿3I(X2 = ‘Male’)I(X3 = ‘White’) + 𝛼I(X1 ⩽ 50)I(X2 = ‘Male’)I(X3 = ‘White’).

The subgroup effects, second-order, and third-order interaction effects, that is, 𝛾 = (𝛾1, 𝛾2, 𝛾3), 𝛿 =
(𝛿1, 𝛿2, 𝛿3) and 𝛼, are modeled using independent normal priors with zero means and separate variances.
They can also be modeled as random variables within a Bayesian hierarchical model, allowing for differ-
ential amount of shrinkage for the associated subgroup effects. Note that modeling at the outcome level
would require including covariate-by-treatment interactions up to the fourth order, as well as all prognos-
tic effects. The connection between the observed data and unobservable subgroup treatment effects 𝜃 in
the left-hand side of the aforementioned equation occurs via the first level of the hierarchy. For example,
when modeling a binary outcome using the same three biomarkers, we can assume that the observed log-
odds ratio in each candidate subgroup is generated by independent normal distributions centered around
𝜃, that is, 𝜃 ∼ N

(
𝜃, 𝜎2

𝜃

)
.

7.1. Interaction trees

The IT method for survival outcomes [70] extends the methodology of survival trees developed in [78],
which in turn borrows heavily from the original CART algorithm by Breiman et al. [33]. Like its
predecessors, the IT procedure includes these three fundamental steps:

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016



I. LIPKOVICH, A. DMITRIENKO AND R. B. D’AGOSTINO, SR.

• Step 1: Growing a large initial tree.
• Step 2: Constructing a nested sequence of pruned trees.
• Step 3: Selecting the best-sized subtree from the sequence.

As mentioned in Section 4, the key feature of IT is that the splitting criterion is based on the test statistic
for the treatment-by-split interaction in the model fitted ‘locally’ within each parent node intended for
splitting. The model used for survival outcomes is a semiparametric Cox proportional hazards regression
model with the terms for treatment (t), provisional split indicator (s), and their interaction:

h(u|ti, si) = h0(u) exp(a1si + a2ti + a3siti), (10)

where h0(u) is the node-specific baseline hazard function (estimated non-parametrically) and u is the time
from the initiation of treatment to the event of interest. The splitting criterion can be defined as the Wald
test statistic or the likelihood-ratio test (LRT) statistic for testing the null hypothesis that for a3 = 0. The
former is faster to compute because it requires fitting a single model, that is, the outcome model (10),
whereas the LRT statistic requires fitting the original model (10) and the following reduced model:

h(u|ti, si) = h0(u) exp(b1si + b2ti). (11)

The LRT statistic is computed as G(s) = −2(l2 − l1), where l1 and l2 are the partial log-likelihood
values based on the models (10) and (11), respectively. While the Wald test statistic can be used in the
tree-growing step (Step 1), the LRT statistic will be needed for pruning and selection of the best-sized tree
(Steps 2 and 3) based on the interaction-complexity criterion, as will be explained shortly. Therefore, we
assume that G(s) is used throughout the entire process. Specifically, the tree growing algorithm in Step 1
proceeds as follows: for each parent node, the split s∗ is selected to maximize G(s) over all allowable splits
for all candidate covariates. The algorithm is repeated recursively until a large tree T0 is grown (given
the pre-specified restrictions on the minimal sample size in each terminal node and other parameters that
control the depth of the tree).

For Steps 2 and 3, we need to define the interaction-complexity criterion for a tree structure T. Let Tterm
denote the set of terminal nodes of T, T−Tterm the set of internal nodes, and |T| the number of nodes in T.
Note that |T| can be written as the number of terminal nodes is less than one and is equal to the number
of splits needed to grow T from the root node. The interaction-complexity criterion is defined as

G𝛼(T ) = G(T ) − 𝛼(|Tterm| − 1), (12)

where

G(T ) =
∑

s∈T−Tterm

G(s)

is the sum of the LRT statistics over all internal nodes of T, which can be viewed as the total amount of
treatment heterogeneity represented by the tree structure T. Further, 𝛼 is the amount of penalty associated
with each additional split.

Starting from the initial tree T0, the algorithm of repeatedly removing the ‘weakest link’, that is, a
branch of the tree the removal of which causes the smallest reduction in G(T), is applied to produce a
nested sequence of trees:

TM ⊂ TM−1 ⊂ … ⊂ T0,

where TM is the tree consisting of the root node. This is essentially the same pruning procedure that
was developed for CART by Breiman et al. [33]. The only difference is that the interaction-complexity
criterion is used instead of the cost-complexity criterion utilized in the CART algorithm. The trees in
the nested sequence are formed by maximizing the interaction-complexity criterion in (12) over all 𝛼’s
increasing from 0 to ∞. For example, this criterion is maximized by the initial tree (T0) if no penalty is
applied (𝛼 = 0). On the other hand, this criterion is maximized by the trivial tree, which consists of the
root node if 𝛼 = ∞.

As shown in [33], in order to obtain all distinct trees that maximize the criterion, one does not need
to examine the infinite set of 𝛼’s. It is sufficient to start with 𝛼 = 0 and consider a finite sequence of
the penalty values obtained by incrementing the previous penalty by the amount needed to remove the
‘weakest link’ in the current tree. Using this key observation, Breiman et al. [33] developed an efficient
pruning algorithm for constructing a nested sequence of trees.
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As a by-product of the pruning algorithm, a one-to-one mapping between the sizes of trees in the
sequence and associated values of 𝛼 is produced. The relationship is similar to that shown in Figure 2.
Therefore, selection of the size of a sub-tree on the upper horizontal axis is equivalent to selection of the
cost-complexity parameter, which is a scaled version of 𝛼 shown on the lower horizontal axis. As we saw
in Section 5, this task is accomplished in CART by means of CV, and the cost-complexity parameter is
selected by using the ‘minCV+1SE’ rule. The final tree is easily constructed as the one that maximizes
(12) with 𝛼 set to the value estimated from CV.

Loosely speaking, the tree selection criterion in CART can be thought of as the penalized likelihood,
which places a penalty at each split and the amount of penalty per split is estimated from the data (via
CV or independent test data if available). Note that, in the development of survival trees by LeBlanc and
Crowley [78], a different route was taken for selecting the final tree from the set of pruned trees. This
approach was later adopted in [70]. In this approach, the penalty per split is a pre-specified constant,
denoted by 𝛼c, rather than a data-dependent quantity. This is similar to the popular Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC) used in model selection, for example, 𝛼c = 2
is used in the AIC or 𝛼c = log(n) in the BIC. However, ‘additional’ penalty is applied to the partial
likelihood G(T)—the amount of treatment heterogeneity associated with all the splits within a given
tree structure T—to account for the fact that the splits are not pre-specified but formed adaptively using
the same dataset. The final sub-tree is selected from the nested sequence as the one that maximizes the
following criterion:

Ĝ𝛼c
(Ti) = Ĝ(Ti) − 𝛼c(|Tterm,i| − 1), (13)

where Ĝ(Ti) is a bias-corrected estimate of G(Ti), which is obtained using a resampling-based method
(see [70, 78] for details. Therefore, while 𝛼c penalizes for increasing complexity (number of splits) of
the tree, the bias-corrected estimate Ĝ(T) accounts for overoptimism in G(T) when it is computed by
‘resubstitution’, that is, from the same data that was used to construct the tree.

8. Modeling optimal treatment regimes

This section provides a brief overview of methods that fall within the second framework of methods
for personalized medicine (Section 4.2) that emphasizes identifying an optimal treatment for a given
patient rather than finding the ‘best patient’ for a given treatment. As we will see, estimating methods for
developing OTRs often simplify to the methods aiming at direct estimation of the global treatment effect
that were considered in Section 7.

Earlier in Section 4.1, we briefly introduced the concept of potential outcomes that plays an important
role in defining OTRs. A treatment regime (also known as an individual treatment rule) d(𝐗) is defined
as the function that maps a patient’s covariate vector 𝐗 to one of the available treatments choices. In the
setting introduced in Section 4.1 with two treatment choices (T = 0, control arm; T = 1, experimental
treatment arm), d(𝐗) is equal to 0 or 1. The potential outcome associated with a specific regime d(𝐗) is
given by

Ỹ(d(𝐗)) = Ỹ(1)d(𝐗) + Ỹ(0)(1 − d(𝐗)),
where Ỹ(1) and Ỹ(0) are the potential outcomes for a randomly chosen patient if this patient was allocated
to the treatment and control arms, respectively. Specifically, Ỹ(d(𝐱)) is the potential outcome for a patient
with the covariate vector 𝐗 = 𝐱 who exactly follows the treatment assignment rule d(𝐗).

In their groundbreaking paper, Qian and Murphy [79] introduced the notion of the value function,
which is defined as the expected potential outcome for a specific treatment regime (assuming larger values
of the outcome represent a patient’s benefit):

V[d(𝐗)] = E[Ỹ(d(𝐗))].

The value function represents the expected rewards, which would be received if all patients followed
the rule d(𝐗). An OTR is then defined as follows:

dopt(𝐗) = argmax
d

V[d(𝐗)].

It is easy to see how an optimal regime can be found for each patient if the outcome function f (𝐗,T)
were known. In this case, a patient with the covariate profile 𝐱 should be assigned to T = 1 if f (𝐱, 1) >
f (𝐱, 0) and to T = 0 otherwise. Given this, a natural approach to estimating an OTR would be to utilize
the following two-stage algorithm:
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• Obtain an estimate of the outcome function f̂ (𝐗,T).
• Let d̂opt(𝐗) = I (̂f (𝐗, 1) > f̂ (𝐗, 0)).

A similar algorithm based on a penalized regression model with the lasso penalty was proposed in [79].
It was later pointed out by several researchers that more efficient approaches to estimating OTR can
be defined by directly targeting the individual treatment contrast z(𝐗) rather than the global outcome
function f (𝐗, T) (for example, the review paper by Zhao and Zeng [80]). Indeed, if the outcome function
has a simple linear form from Section 4.1, that is, f (𝐗,T) = h(𝐗) + z(𝐗)T , the prognostic component
h(𝐗) cancels out, and an optimal individual treatment rule depends on the covariates only through z(𝐗):

dopt(𝐗) = I(z(𝐗) > 0). (14)

To estimate OTRs without estimating h(𝐗), Lu, Zhang and Zeng [81] considered the following model
with an arbitrary ‘baseline’ function h(𝐗) plus the predictive effects modeled as a linear function of
the covariates:

f (𝐗,T) = h(𝐗) + z(𝐗)T ,

z(𝐗) = 𝛽0 +
p∑

j=1

𝛽jXj.

Further, following the A-learning framework [11], a penalized regression procedure which provides
a consistent estimate of the model parameters without actually fitting the baseline function h(𝐗) was
developed. Specifically, an adaptive lasso penalty was utilized and the following loss function was used:

L(𝜷) = 1
n

n∑
i=1

[
yi − h(𝐱i) −

(
𝛽0 +

p∑
j=1

𝛽jxij

)
(ti − 𝜋(𝐱i))

]2

,

where h(𝐱) is an arbitrary function capturing prognostic effects, for example, a linear function or simply
a constant, and 𝜋(𝐱) is the probability of assigning a patient with an observed covariate profile 𝐱 to the
experimental treatment, that is, 𝜋(𝐱) ≡ 1∕2 in a clinical trial is with 1:1 randomization (this formulation
can be thought if as a generalization of [76]). Foster et al. [82] considered the same class of models,
however with both h(𝐗) and z(𝐗) modeled non-parametrically and estimated via a back-fitting algorithm.

A different route can be taken, which is implicit but not recognized in [79]. The value function can
be expressed in terms of the expectation over the observed outcomes via the following fundamental
expression:

V[d(𝐗)] = E

[
I(T = d(𝐗))

P(T = d(𝐗)|𝐗)Y

]
, (15)

where the random variable Y is the observed outcome and P(T = d(𝐗)|𝐗) is the probability of being
assigned to the treatment selected by the rule d(𝐗). The expectation is taken with respect to the joint
distribution of random variables Y ,𝐗, T under the condition that every patient follows the rule d(𝐗).
Because of that, we can replace P(T = d(𝐗)|𝐗) in the denominator with P(T = t|𝐗), the probability that
the patient is assigned the treatment that was actually observed (which will be shorthanded as P(t|𝐗)). In
other words, (15) states that the reward from following a treatment regime d(𝐗) is equal to the expected
outcome in a subset of patients who actually followed that regime, inversely weighted by the probability
of being assigned to the regime. An OTR can now be estimated by directly maximizing the rewards in
(15) with respect to d(𝐗) or, equivalently, minimizing the expression where the expectation is evaluated
for patients who did not follow the regime d(𝐗):

dopt(𝐗) = argmin
d

E

[
I(T ≠ d(𝐗))

P(t|𝐗) Y

]
, (16)

Substituting the representation (14) for d(𝐗) in (16), we obtain

zopt(𝐗) = argmin
z

E

[
I(T ≠ I(z(𝐗) > 0))

P(t|𝐗) Y

]
. (17)
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We now observe that (16) and (17) can be readily interpreted as the weighted classification error or
misclassification loss when fitting a binary classifier to the actual treatment assignments T . As a result,
the OTR problem can be viewed as a (weighted) classification problem using the familiar loss functions
for binary outcomes. The classifier is modeled as the underlying treatment contrast z(𝐗) that needs to
be known only up to its sign, that is, sign z(𝐗). This key observation led Zhao et al. [83] to develop the
outcome-weighted learning (OWL) methodology for estimating OTRs. As was shown in [83], estimating
optimal individualized treatment policies can be framed as a classification problem where the optimal
classifier corresponds to the OTR. Within this framework, the treatment assignment variable plays a role
of the outcome variable, and a certain ‘outcome-based weight’ is applied to each patient. Specifically,
wi = yi∕𝜋i for the treated patients and wi = yi∕(1 − 𝜋i) for the untreated patients, where

𝜋i = P̂(T = 1|𝐗 = 𝐱i)

is the estimated probability of assigning the ith patient to the experimental treatment arm (note that in a
randomized treatment clinical trial it can be estimated simply as the proportion of patients with T = 1).

The idea is that the assigned weights take into account patients’ observed outcomes in such a way that
the misclassification costs will be minimized if patients with desirable outcomes are assigned to the study
arm that they were actually assigned to and patients who did not experience much benefit under their
current treatment are assigned to the other arm. Therefore, minimizing the weighted misclassification
costs will entail assigning a patient to the treatment that provides maximum benefits given the patient’s
biomarker values. Any machine learning method for predicting binary or multinomial outcomes that
support patient-specific weights can then be adopted for estimating an OTR within this framework. For
example, the machine learning method of support vector machines was used in [83].

Zhang et al. [84] also considered the problem of estimating OTRs as a classification problem under
a more general framework. They proposed to fit a weighted classifier, for example, a CART or SVM
model, to the class labels that are defined by evaluating the sign of the individual treatment contrast, that
is, I(z(𝐱i) > 0). As in the VT method presented in Section 6.4, the treatment contrast is estimated using
the framework of potential outcomes; however, the outcome model is combined with the probability of a
treatment model in a doubly robust augmented inverse probability weighted estimator (AIPWE), which
is defined as follows (see also [85]):

ẑAIPWE(𝐱i) =
ti
𝜋i

yi −
1 − ti
1 − 𝜋i

yi −
ti − 𝜋i

𝜋i
f̂ (𝐱i, 1) −

ti − 𝜋i

1 − 𝜋i
f̂ (𝐱i, 0).

The weighted classifier therefore will produce decision rules for discriminating patients who benefit
from the experimental treatment from those who benefit from the control treatment. The patient-specific
weights are taken as the absolute values of the estimated treatment contrasts, that is, |̂zAIPWE(𝐱i)|. Thus,
the patients for whom the choice of treatment does not make much difference exert less influence on the
decision rule.

As shown in [84], the OWL method developed in [83] can be considered as a special case of their
approach, when the treatment contrast z(𝐱) is estimated using the inverse probability weighted estimator
rather than AIPWE. The approach of Zhang et al. [84] can also be viewed as a generalization of the
VT method in that the AIPWE estimator of the hypothetical treatment difference, that is, ẑAIPWE(𝐱i),
subsumes the estimator of z(𝐱i) in the VT method. The advantage of AIPWE is that it is more efficient and
is consistent even when the outcome model may be misspecified but the treatment model is not. Note that
this condition trivially holds for a randomized clinical trial where the probability of treatment assignment
is known. When the data come from an observational study with non-random treatment assignments, the
doubly robust AIPWE estimator protects against model misspecification as long as at least one of the two
models (models for the outcome and treatment assignment) is correctly specified.

The optimal rule for selecting patients to be treated is estimated as d(𝐗) = I(z(𝐗) > 0) and may
be quite complex depending on the richness of the function space used to estimate z(𝐗) (see the next
section). One approach to render the rule more clinically interpretable and manageable is to enhance the
OTR procedure with an additional step where the estimated rule I(z(𝐗) > 0) (or I(z(𝐗) > 𝛿), where
𝛿 > 0 is the clinically meaningful effect size) will be approximated with a simpler rule or set of rules,
involving a smaller number of covariates and assuming a more natural form corresponding to the notion
of subpopulation. A procedure of this kind, known as simple optimal regime approximation (SORA),
was recently proposed and implemented in [82]. ‘Simple rules’ were defined using multidimensional
boxes or regions formed by the intersection of univariate regions such as {x ⩽ a} or {x > a}, where a
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is selected from a grid of pre-defined values. The final multidimensional box can be defined using up to
three covariates and constructed in a ‘stepwise’ fashion.

Fu et al. [86] used an exhaustive search procedure for evaluating simple rules similar to those defined
in [82] and choosing the one that directly maximizes the associated value function estimated using the
outcome-weighted criterion similar to (17), which was made more stable by subtracting an estimate of
the mean function from the outcome: Y − m(𝐗). The mean function m(𝐗) does not have to be correctly
specified. As reported in [86], using a simple linear regression with no treatment variable resulted in
substantial improvement in numerical stability. Laber and Zhao [87] developed a tree-based procedure
that recursively splits each parent node into two nodes such that all patients who fell into the same child
node are assigned the same treatment. An optimal split and associated treatment assignments for the two
child nodes are found by maximizing the value function, again estimated using the outcome-weighted
criterion based on (17) and stabilized by subtracting the estimated mean function m(𝐗) from the outcome.
Their choice of the mean function was more involved than in [86] and based on predicted outcome under
a crude estimate of the optimal rule dcr(𝐗), that is,

m(𝐱) = E(Y|𝐗 = 𝐱,T = dcr(𝐱)).

This mean function was estimated non-parametrically by the random forest method. See also [88] where
decision lists were used to construct interpretable and parsimonious treatment regimes.

8.1. Penalized regression framework for OTR

In this section, we consider the OWL method for estimating OTRs developed in [83]. We further focus
on a simpler implementation of this method, which is similar in spirit to [27].

Several comments can be made regarding the problem of minimizing the expected misclassification
loss function in (17). First, direct minimization of (17) is a computationally challenging problem because
it leads to non-convex optimization. Therefore, as is often performed in the classification literature, direct
minimization of the misclassification error (0–1 loss) is replaced with minimization of an appropriately
selected smooth convex loss function. The implication of replacing the 0–1 loss with a ‘surrogate loss’
for (17) is that, instead of estimating the true dopt(𝐱), a slightly different target d∗

opt(𝐱) induced by the
surrogate loss function is estimated, namely, L(t, z(𝐱)). See Section 6.2 where several loss functions
for binary outcomes (the treatment indicator in this context), such as the (negative) binomial log-
likelihood or hinge loss, are considered. The solution based on the ‘smooth’ version of the loss function is
z(𝐗|𝜷∗), with

𝜷∗ = argmin
𝜷

E[L(T , z(𝐗|𝜷))W],

where W = Y∕P(t|𝐗), z(𝐗|𝜷) is the treatment contrast function parameterized using a vector of the
regression coefficients 𝜷, and the optimal treatment assignment rule is

d∗
opt(𝐗) = I(z(𝐗|𝜷∗) > 0).

While this change in the estimation target (from 𝜷 to 𝜷∗) is generally rather negligible, it immediately
opens the gates for computationally efficient methods for estimating dopt(𝐗). The problem is reduced to
a (weighted) regression for a binary outcome.

Secondly, as in any regression problem with a large number of candidate covariates, some form of
regularization is desirable, which is typically accomplished by introducing penalties as described in
Section 6.2 (e.g., l1, l2, and elastic net penalties). Note that the feature space for estimating an OTR using
OWL is reduced compared with that considered in the examples presented in Section 6.2 because the
treatment-by-covariate interactions do not need to be included in the model. However, this may still be a
high-dimensional problem due to a large number of covariate-by-covariate interactions.

Finally, as in penalized regression models considered in Section 6.2, one needs to define a class of
functions that will be used in regression modeling, that is, specify the form of z(𝐗|𝜷). This class will
ultimately define the form of treatment assignment rules. On the one extreme, one can consider using
basis function expansions, for example, natural splines, wavelets, trees, or kernel methods of feature
expansion, leading to ‘black box’ models with uninterpretable rules. On the other extreme, an OTR may
be constrained to lie in the space defined by simple linear functions of the covariates or a single-tree
model that can be readily interpreted by clinical trial researchers.
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We note from this discussion that the OWL approach essentially reduces the problem of finding an
OTR to a class of penalized regression problems for binary outcomes. Therefore, many different subtypes
of OWL can be devised as one can come up with many different ways to fit weighted regression models
for a binary outcome by making different choices of the loss, penalty, and basis expansion functions.

As a simple example, consider a randomized clinical trial with a 1:1 randomization and let 𝜋 denote
the probability of assigning a patient to the experimental treatment arm. We can construct parsimonious
models for determining an OTR in a continuous outcome setting using the following steps:

• Fit a weighted logistic regression model with the lasso penalty and (negative) binomial loss to the
treatment labels, that is,

𝜷 = argmin
𝜷

{
n−1
∑n

i=1
L[ti, z(𝐱i|𝜷)]wi + 𝜆

∑p

j=1
|𝛽j|} ,

wi =
yi∕𝜋, if ti = 1,

yi∕(1 − 𝜋), if ti = 0,

and z(𝐱i|𝜷) = 𝛽0+
∑p

j=1 𝛽jxj is modeled as a linear predictor for the probability of treatment selection
on the logit scale.

• Optimal treatment assignment rule for patient with covariate profile 𝐗 = 𝐱 is estimated as

d̂∗
opt(𝐱) = I

(
z
(
𝐱|𝜷) > 0

)
.

As mentioned earlier, Zhao et al. [83] pioneered the OWL approach and proposed using the hinge loss
with the l2 penalty and kernel basis expansion to model z(𝐱) in problems with a continuous outcome vari-
able. Huang and Fong [89] considered binary outcome settings and proposed a novel ramp loss function,
which better mimics the original 0–1 classification loss and l2 penalty expanded by using non-linear ker-
nels. An interesting feature of the Huang–Fong method is that the use of the ‘treatment/disease burden
ratio’ 𝛿, 0 ⩽ 𝛿 ⩽ 1, in treatment assignment rules. This ratio is defined as a fraction of disease bur-
den caused by a single event. For example, 𝛿 = 0.05 means that the treatment induces a burden (e.g., in
terms of patient’s safety or extra costs) equivalent to 5% of the burden caused by the occurrence of one
undesirable event. In this case, the reduction in the probability of an undesirable event by 5% with a new
treatment would be essentially washed out by the 5% increase in the treatment burden. The challenge
of introducing the treatment burden parameter on the probability scale is in that the OTR for the case of
𝛿 > 0 cannot be expressed based on a simple linear model for z(𝐗). On the other hand, if 𝛿 was defined
on the same scale, which is used to model the treatment contrast z(𝐗), for example, a logit scale as in
our example of penalized logistic regression, the rule for 𝛿 > 0 could be expressed in terms of a similar
simple model, for example, as d̂∗

opt(𝐱) = I(z(𝐱|𝜷) > 𝛿). This consideration justified modeling z(𝐗) as a
complex function via nonlinear kernels in [89]. One may, however, argue that specifying the treatment
burden on the logit scale (even if somewhat less clinically interpretable) would be desirable from the
modeling simplicity perspective.

On the opposite extreme in the landscape of OWL-based methods, we find the proposal of Xu et al. [27]
who considered the simplicity and interpretability of the treatment assignment rule as the main goal. The
regularized outcome weighted subgroup identification (ROWSi) method introduced by Xu et al. [27] is
based on fitting simple linear models with the weighted (negative) binomial loss and lasso penalty for
continuous predictors. This approach ensures sparseness in the solution and facilitates the interpretability
of the resulting rules. Predictive biomarkers can be easily identified by inspecting the effects with non-
zero coefficients. The following example can be used to illustrate the argument for using simple linear
models for modeling the treatment contrast function. Assume that the outcome model belongs to the
following class of models, which includes generalized linear models,

E(Y|𝐗,T) = g{h(𝐗) + l(z(𝐗)T)}, (18)

where z(𝐗) is a simple linear model of the covariates, that is, z(𝐗|𝜷) = 𝛽0 +
∑p

j=1 𝛽jXj, g(⋅) and l(⋅)
are increasing functions and h(⋅) is an arbitrary function. The optimal treatment assignment rule can be
expressed as I(z(𝐗|𝜷) > 0) and the regression coefficients can be consistently estimated by minimizing
a ‘smooth’ version of the loss function L(T , z(𝐗)) with an appropriate penalty to accommodate a high-
dimensional covariate space (as illustrated in the aforementioned example). Note that, while h(𝐗) may

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016



I. LIPKOVICH, A. DMITRIENKO AND R. B. D’AGOSTINO, SR.

depend on the covariates in a very complex way, the optimal rule is quite simple and is recovered from the
data without estimating h(𝐗). Under relatively mild assumptions about the form of the outcome function,
which includes generalized linear models (18) as a special case, the optimal rule depends only on the
sign of a linear function of the covariates (see Proposition 1 of Xu et al. [27]).

The framework of Xu et al. [27] provides a powerful extension of the original proposal by Zhao et
al. [83] to different types of outcomes. Specifically, time-to-event outcomes with censored times can be
modeled within the OWL framework as easily as continuous outcomes because many common models for
survival outcomes assume a functional form covered by Proposition 1 of Xu et al. [27]. To illustrate, let
Y denote a time-to-event outcome variable and consider the Aalen–Cox model with the hazard function
given by

𝜆Y (y|𝐗,T) = 𝜆0(y|𝐗) exp(−z(𝐗|𝜷)T), (19)

where the baseline hazard 𝜆0(y|𝐗) does not depend on the treatment assignment and z(𝐗|𝜷) is the treat-
ment contrast modeled as a linear function of the covariates. If the outcome variable Y is completely
observed, the optimal treatment assignment rule is based on the treatment contrast function z(𝐗|𝜷) and
can be estimated by using a weighted logistic model with the weights Y∕P(t|𝐗). However, if Y is only
partially observed because of (non-informative) censoring, as is most often the case, the optimal rule
is expressed using the same contrast function z(𝐗|𝜷) as in (19). This function is now estimated via a
weighted logistic model with the weights Ỹ∕P(t|𝐗), where Ỹ is the observed and possibly censored
value of Y .

Considering binary outcomes, let n, n1, and n0 denote the total number of patients in the study and the
number of patients randomized to treatment and control arms, respectively. Note that, when the outcome-
weighted misclassification loss function L(T , z(𝐗)) is computed, the weights for the negative outcome
(Y = 0) are all equal to zero and only patients with a positive outcome (Y = 1) can be used to estimate the
treatment contrast (with the weights equal to 1∕𝜋(𝐗) = n∕n1). This is clearly undesirable; however, one
can easily incorporate data from the other patients to compute the treatment assignment rule. First, the
rule can be estimated by using only patients with a negative outcome by simply switching the treatment
labels in the loss function, that is, by setting T∗ = 1 − T and using 1∕(1 − 𝜋(𝐗)) = n∕n0 as the weights.
Then, as argued in [89], because the minimizer of the two sets of losses also minimizes their linear
combination, the losses can be combined as a linear combination with, say, equal weights. Therefore, a
single loss function can be defined as

L(𝜷) = n−1
∑n

i=1
L[t∗i , z(𝐱i|𝜷)]wi,

t∗i =
{

ti, if yi = 1,
1 − ti, if yi = 0,

wi =
{

n∕(2n1), if ti = 1,
n∕(2n0), if ti = 0.

(20)

This approach leads to a simple method for personalized medicine that was discovered independently
by many researchers and presented under different names. We will use this simple method in Case study 1
with a binary outcome variable in Section 10.4.

Xu et al. [27] defined two important measures, denoted by d+(𝜷) and d−(𝜷) to help quantify the perfor-
mance of a treatment assignment rule and proposed inferential methods based on these quantities. These
measures are conceptually similar to the measures of enhanced treatment effect in the identified subgroup
Q(Ŝ) introduced in Section 6.4. The identified subgroup corresponds here to the group of patients who
are allocated to the experimental treatment by the treatment assignment rule, that is,

Ŝ =
{
𝐱 ∶ z

(
𝐱|𝜷) > 0

}
.

The measures summarize the average treatment effect for the patients allocated to the experimental
and alternative treatment arms:

d+(𝜷) = E
{

E(Y|z(𝐗|𝜷) > 0, T = 1) − E(Y|z(𝐗|𝜷) > 0,T = 0)
}
,

d−(𝜷) = E
{

E(Y|z(𝐗|𝜷) < 0, T = 0) − E(Y|z(𝐗|𝜷) < 0,T = 1)
}
,

(21)

where the inner expectation is evaluated with respect to Y and the outer with respect to 𝐗. An ideal
treatment assignment rule maximizes both d+(𝜷) and d−(𝜷).
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To construct confidence intervals for d+(𝜷) and d−(𝜷), Xu et al. [27] proposed to employ a resampling
method. Specifically, the m-out-of-n bootstrap was utilized to account for the discontinuity in d+(𝜷)
and d−(𝜷) because of a non-negligible probability of z(𝐱|𝜷) = 0 (this occurs when there are multiple
categorical covariates). First, the data are sampled with replacement m < n times (m is chosen as n𝛼 for
some 𝛼 < 1, for example, 𝛼 = 0.8) and the estimate of 𝜷 obtained from the bth bootstrap sample is

denoted by 𝜷
(b)

. The sample estimates of the average treatment effects are then computed as follows:

d̃+
(
𝜷
(b))

= 1|||S(b)
1
|||
∑

i∈S(b)1

yi −
1|||S(b)
0
|||
∑

i∈S(b)0

yi,

d̃−
(
𝜷
(b))

= 1|||S̄(b)
1
|||
∑

i∈S̄(b)1

yi −
1|||S̄(b)
0
|||
∑

i∈S̄(b)0

yi,

where the summations are over the sets of indices (subgroups) defined as

S(b)
0 =

{
i ∶ z

(
𝐱i|𝜷 (b))

> 0, ti = 0
}
,

S(b)
1 =

{
i ∶ z

(
𝐱i|𝜷 (b))

> 0, ti = 1
}
,

S̄(b)
0 =

{
i ∶ z

(
𝐱i|𝜷 (b))

⩽ 0, ti = 0
}
,

S̄(b)
1 =

{
i ∶ z

(
𝐱i|𝜷 (b))

⩽ 0, ti = 1
}
.

Each bootstrap sample gives rise to its own estimate of the treatment assignment rule, which is applied
back to the original dataset. This approach helps reduce the overoptimism bias associated with the stan-
dard resubstitution estimates of d+(𝜷) and d−(𝜷) (similar to that of Q(Ŝ) discussed in Section 6.4). Finally,
the (1−𝛼)100% confidence intervals for d+(𝜷) and d−(𝜷) are formed using the 𝛼∕2 and 1−𝛼∕2 quantiles

of the bootstrap distributions d̃+
(
𝜷
(b))

and d̃−
(
𝜷
(b))

, b = 1,… ,B, respectively.

9. Local modeling

Section 8 presented methods for estimating OTRs that arise within the second framework of personal-
ized medicine defined in Section 4.2, and this section will focus on methods aiming at direct subgroup
search (local modeling methods) that are typically developed within the first framework. Local model-
ing methods deal with direct identification of regions in the covariate space with desirable properties
such as an improved treatment effect z(𝐱). Within this approach, the interest lies in studying specific sub-
sets of the space, and there is no longer a need to estimate the outcome function f (𝐱, t) over the entire
covariate space.

Examples of local modeling approaches include the responder identification procedure aimed at dis-
covering subgroups of treatment responders in clinical trials [90] and subgroup identification based on
differential effect search (SIDES) method [91]. The latter procedure was constructed as an extension
of the patient rule induction method (PRIM) proposed by Friedman and Fisher [92]. When developing
PRIM, Friedman and Fisher [92] argued that the problem of deriving a general model for the outcome
function f (𝐱, t) is a challenging problem and forces the researcher to extend models over the subsets of
the covariate space that are, in fact, ‘uninteresting’ for the research goal. It is often more sensible to shift
the focus to the problem of bump hunting, that is, examining local features of the covariate space, known
as bumps, such as regions with a strong treatment effect.

Indeed, as was shown in Section 6, global outcome modeling methods rely on increasingly more com-
plex models that attempt to develop predictions for the individual treatment contrast z(𝐱) for any covariate
vector 𝐱. The requirement to achieve accurate predictions over the high-dimensional space may result in
compromising the quality of predictions within regions that would be of most interest from a practical
perspective, including covariate values that correspond to an enhanced treatment effect.
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The main goal of bump hunting methods such as PRIM is to define sets of multivariate rectangu-
lar regions based on the candidate covariates X1,… ,Xp. For example, assuming for simplicity that all
covariates are continuous, a rectangular region is defined as

S =
p⋂

i=1

{li ⩽ Xi ⩽ ui},

where li and ui the lower and upper limits for the ith covariate. The limits are determined in a data-
driven manner using a peeling technique. Specifically, extreme values of continuous/ordinal covariates
or individual levels of nominal covariates are removed. The peeling algorithm is sequentially applied to
a single covariate, and the order of the covariates is determined by the value of an appropriate objective
function. The tuning parameter used in the peeling algorithm is the maximum proportion of observations
to be removed at a time. This parameter can be calibrated via CV. It is instructive to compare bump
hunting methods based on the peeling algorithm to recursive partitioning methods discussed, for example,
in Section 7.1. With tree-based procedures, each split reduces the size of the current subgroup on average
by 50% and bump hunting procedures generally proceed at a slower pace.

The peeling process is fairly unstable, and the performance of the peeling algorithm can be improved
by combining this algorithm with a pasting algorithm. A pasting algorithm adds observations to selected
regions to maximize the objective function used in the peeling algorithm. Friedman and Fisher [92]
demonstrated that, within PRIM, the two algorithms can be applied iteratively. The resulting regions of
interest are defined as unions of rectangular regions in the covariate space.

When Kehl and Ulm [90] introduced the responder identification procedure to extend PRIM to clinical
trial settings, the key step within the new procedure was estimation of the outcome function in the control
arm, that is, f (𝐱, 0). An improved version of the responder identification procedure proposed in [93]
bypassed this step by introducing a flexible objective function in the PRIM framework. The modified
procedure supports direct search for patient subgroups with positive treatment effects while ensuring that
the identified subgroups maintain a differential effect compared with the complementary subgroups (this
is accomplished by imposing an interaction effect constraint).

As stated earlier, other important examples of local modeling methods are the SIDES method [91], and
its extension known as the SIDEScreen procedure [94]. The SIDES method utilizes recursive partitioning
to perform a direct search for subgroups of patients who experience a treatment benefit. The recursive
partitioning algorithm is applied to each individual candidate biomarker and an optimal split is found by
maximizing a pre-defined differential effect criterion. The SIDES method employs complexity control
to reduce the size of the search space and multiplicity adjustments to account to selection bias inherent
in subgroup search. The SIDEScreen procedure improves on the basic SIDES procedure by introducing
a biomarker screen. A detailed description of the general SIDES method is presented in Section 9.1, and
SIDEScreen is defined in Section 9.7. The SIDES method is illustrated in Sections 10.1 and 10.5 where
it is applied to Case studies 1 and 2.

Bayesian approaches within the local modeling framework were developed in [25, 95]. These
approaches treat candidate patient subgroups as ‘submodels’ and perform inferences by applying
Bayesian model averaging algorithms. Berger et al. [25] proposed to define each submodel as a com-
bination of possible predictive and prognostic (or baseline) effects using 10 different basic subgroup
structures. Within each such structure, the predictive and prognostic components are modeled locally by
subsetting on a small number of dichotomous biomarkers (up to one variable in the prognostic or/and
predictive components). A continuous outcome variable within a ‘local’ submodel M may be driven
by a prognostic effect defined by the variable Xl and a predictive effect defined by the variable Xm,
l,m = 1,… , k, that is,

yi|M = 𝜇 + 𝛼I(xil = 0) + ti𝛽I(xim = 0) + 𝜀i, 𝜀i ∼ N(0, 𝜎2).

Berger et al. [25] showed how to elicit priors for each submodel in the model space for all possible combi-
nations of prognostic and predictive effects and indicated that assigning priors ‘accounts for multiplicity
and yet allows for (pre-experimental) preference to specific subgroups’. Various posteriors summaries
can be computed at the individual patient level by model averaging. For example, prediction of the treat-
ment effect for a patient with a specific biomarker profile is based on averaging predictions for that patient
across all models weighted by their respective posterior probabilities.
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9.1. General SIDES method

This section introduces the general SIDES method and its extension (SIDEScreen procedure) for
biomarker exploration and identification of subgroups of patients who derive substantial benefit from the
experimental treatment. The most important features of the SIDES method include the following:

• Complexity control, which is applied to reduce the size of the search space and produce easy-to-
interpret results, and lessen the multiplicity burden.

• Multiplicity control, which is employed to preserve the probability of incorrect subgroup identifica-
tion.

• Biomarker screen, which is introduced to filter out non-informative biomarkers.

The original SIDES procedure [91], which will be referred to at the SIDESbase procedure, is intro-
duced first, followed by the SIDEScreen procedure [94]. SIDESbase effectively deals only with relatively
small sets of candidate biomarkers, and its performance tends to deteriorate in ‘massive’ biomarker
analysis problems with hundreds of baseline covariates. Performance loss is especially pronounced in
settings where most of the candidate biomarkers are non-informative, which is quite common in real-
life applications. SIDEScreen was specifically developed for the more challenging settings with large
sets of pre-specified biomarkers. For application of the SIDES method to drug development programs,
see [30, 96].

The SIDESbase subgroup search algorithm is outlined in Table VIII. To generate a large collection of
promising subgroups, the SIDESbase algorithm starts with the overall population, which serves as the first
parent group. The algorithm optimally splits the parent group into two complementary child subgroups
for each candidate biomarker and selects the best child group based on a pre-specified splitting criterion.
The procedure is then applied recursively to each child group, which is treated as a parent group.

Focusing first on continuous or ordinal biomarkers, an optimal cutoff ci is chosen by examining all
possible values of the biomarker that result in non-trivial biomarker-low and biomarker-high subgroups:

Li(ci) = {Xi ⩽ ci} and Hi(ci) = {Xi > ci}, i = 1,… , p,

If Xi is a nominal biomarker with k levels, the optimal split of the parent group is found by optimizing the
splitting criterion over all possible partitions of the k categories into two sets, which results in 2k−1 − 1
non-trivial splits. For simplicity, it will be assumed from this point on that all biomarkers in the candidate
set are continuous.

The individual steps of the SIDESbase subgroup search algorithm defined in Table VIII are described
in detail in the succeeding discussion.

Table VIII. SIDESbase subgroup search algorithm.

Step 1. Initialize
A single 0-stage parent group includes all observations in the dataset. Initialize the set of promising subgroups
as an empty set, P = ∅.

Step 2. Iterate (splitting the current l-stage parent group, 0 ⩽ l ⩽ L)

If l = L, the current parent group becomes terminal and is not considered for further splitting, otherwise:

1. Arrange the p candidate biomarkers from the ‘best’ to ‘worst’ in terms of the optimal value of the adjusted
splitting criterion.

2. For each of the top M covariates, select two child subgroups based on the biomarker’s ‘best split’ among
all allowable splits. Let Si denote the subgroup with the larger positive treatment effect based on the
biomarker Xi.

3. Evaluate the complexity criterion on Si and, if passed, include it in the set of promising subgroups P.
4. For each promising subgroup Si, set Si as the current parent group, let l = l + 1 and go to Step 2.
5. If no biomarker has allowable splits resulting in a promising subgroup, the current parent group becomes

terminal and is not considered for further splitting.

Step 3. Finalize

Include a promising subgroup fromP in the final set if the unadjusted treatment effect p-value or the multiplicity-
adjusted p-value is less than pmax.
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9.2. Step 2.1: splitting criterion

The splitting criterion is a function evaluated for each candidate biomarker at each allowable cutoff value.
The most commonly used splitting criterion is the differential splitting criterion, which is given by

D(c) = 2

[
1 − Φ

(|TH(c) − TL(c)|√
2

)]
, (22)

where TH and TL are the appropriate test statistics for evaluating the treatment effect in the biomarker-
high and biomarker-low child subgroups, respectively. A larger value of the test statistic indicates clinical
improvement within a patient subgroup. Further, Φ(x) is the cumulative distribution function of the stan-
dard normal distribution. Note that the splitting criterion is measured on a ‘p-value’ scale and a smaller
value of D indicates a stronger differential effect between the two child subgroups. The criterion (22) is
derived as a one-sided p-value for the test statistic

t =
|TH(c) − TL(c)|√

2
,

based on the half-normal reference distribution, F(t) = 2Φ(t) − 1, t ⩾ 0.
One potential limitation of the differential splitting criterion is that it is computed based on the absolute

treatment difference, and thus, it fails to discriminate between the splits associated with a large positive
treatment effect in one of the subgroups and those associated with a large negative effect. Other types
of splitting criteria are defined in [32]. For example, the directional splitting criterion helps address this
limitation of the differential criterion by reducing the contribution of the child subgroup with a large
negative treatment effect.

To arrange the candidate biomarkers, the splitting criterion D(X, c) is evaluated exhaustively for all
cutoffs c associated with the biomarker X. The best split is defined as follows:

c∗i = argmin
c∈Ci

D(Xi, c),

where Ci defines the allowable set of cutoffs for the biomarker Xi. This set includes all unique values
of Xi, or a pre-specified grid of values can be used to facilitate the search. The set of allowable splits
is further reduced by imposing appropriate sample size constrains, for example, the smallest acceptable
number of patients in both child subgroups

(
nboth

min

)
and the smallest acceptable number of patients in the

subgroup with the larger treatment effect
(
nbest

min

)
.

The optimal value of the splitting criterion for Xi is denoted by

di = D
(
Xi, c

∗
i

)
.

As explained in Section 7, the optimal value of any splitting criterion found by an exhaustive search over
the set of possible cutoffs is known to be biased in favor of biomarkers with a larger set of unique values
or levels. As a result, an adjustment needs to be applied to support a ‘fair’ comparison of the candidate
biomarkers. This ‘local’ multiplicity adjustment is based on the modified Šidák test (Appendix B of [32]).
The adjusted values of the splitting criterion are denoted by

d̃1,… , d̃p.

The candidate biomarkers are arranged by the adjusted criterion.

9.3. Step 2.2: selection of the top subgroups

Let L∗
i and H∗

i denote the child subgroups obtained by an optimal splitting of the current parent group on
the biomarker Xi. Let Si denote the subgroup with the larger positive treatment effect, that is, Si = L∗

i if
T(L∗

j ) > T(H∗
j ) and Si = H∗

i , otherwise. The subgroup Si known as the promising subgroup.
To simplify the notation, assume that d̃1 > · · · > d̃p, and thus, the biomarker X1 is associated with

the largest value of the adjusted splitting criterion. To streamline the subgroup search, the SIDESbase
algorithm retains only the top M promising subgroups, that is, S1,… , SM , where M is a pre-specified
algorithm parameter. As explained in [32], the main reason behind retaining multiple child subgroups for
each parent group is that it ultimately improves the performance of the subgroup search. It is recognized

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016



I. LIPKOVICH, A. DMITRIENKO AND R. B. D’AGOSTINO, SR.

in the machine-learning literature that a greedy approach that always chooses the best option out of
multiple available options is likely to lead to unstable model selection. It will be shown in the succeeding
discussion that the SIDEScreen procedure takes advantage of this feature of the SIDESbase algorithm by
computing VI scores over the collection of subgroups that are used for identifying important biomarkers.

9.4. Step 2.3: complexity criterion

An important component of the SIDESbase subgroup search algorithm is complexity control. A com-
plexity criterion is introduced to explicitly control the size of the search space (total number of subgroups
examined by the algorithm). A promising subgroup is explored further only if the treatment effect in this
subgroup is appreciably large compared with the effect in the parent group.

To apply the complexity criterion, let p1,… , pM denote the one-sided treatment effect p-values in
the promising subgroups S1,… , SM . The one-sided treatment effect p-value in the corresponding parent
group is denoted by p0. The complexity criterion is met in the subgroup Si if pi ⩽ 𝛾p0, where 𝛾 is a pre-
defined complexity parameter with 0 < 𝛾 ⩽ 1. If a promising subgroup meets the complexity criterion,
the subgroup is added to the list of parent groups.

To understand the impact of the complexity parameter 𝛾 , note that, with a larger value of 𝛾 , the total
number of subgroups generated by the SIDESbase algorithm is not controlled and is determined by
parameters L and M (Step 2.4). By contrast, if 𝛾 is set to a small value, very few promising subgroups
will be identified. An optimal value of the complexity parameter can be determined by CV [91].

9.5. Step 2.4: recursion

The SIDESbase subgroup search algorithm proceeds to the next stage and is applied recursively to the
resulting list of parent groups defined at the end of Stage 1 until the algorithm reaches the maximum
number of levels. This number is denoted by L and represents the number of times the algorithm can be
recursively applied to parent groups starting with the overall population at Stage 0. The largest number
of promising subgroups that can be generated by the algorithm is equal to M + M2 +…+ ML.

9.6. Step 3: multiplicity adjustment

A multiplicity adjustment needs to be applied to each subgroup in the final set to remove selection bias
and carry out reliable treatment effect tests. Unadjusted inferences within the promising subgroups are
known to be highly unreliable. Appropriate adjustments of the treatment effect p-values help protect
the probability of incorrectly discovering a patient subgroup with a large treatment difference under the
assumption no treatment effect across all subsets of the overall patient population.

The SIDESbase procedure includes an important option to adjust the treatment effect p-values based
on a permutation procedure [97]. This multiplicity adjustment relies on generating a large number of null
datasets. These null datasets are constructed by permuting the treatment labels in the original dataset, and
thus, the treatment effect tends to zero over the entire patient population.

First, the regular treatment effect p-values are computed in all subgroups identified by the SIDESbase
procedure. These p-values are expected to be highly significant because the search algorithm pursued the
subgroups with a strong treatment benefit. Let p∗j denote the p-value in the subgroup Sj, where j = 1,… ,m
and m is the total number of subgroups in the final set. In addition, the treatment effect p-value is computed
in the best subgroup selected within each null dataset. This p-value is denoted by qk, k = 1,… ,K,
and K is the number of null datasets. A multiplicity-adjusted p-value for the subgroup Sj is defined as
the proportion of null datasets where the treatment difference in the best subgroup is more significant
than the treatment difference within Sj. In other words, the adjusted treatment effect p-value in Sj is
given by

p̃j =
1
K

K∑
k=1

I
{

qk ⩽ p∗j

}
.

The resulting adjusted p-values provide the basis for reliable inferences within patient subgroups
identified by SIDESbase and are generally much greater than the original treatment effect p-values.

It is shown in [32] that the complexity parameter 𝛾 helps control the multiplicity burden for SIDESbase.
In particular, selecting a smaller value of 𝛾 reduces the size of the search space, and as a consequence, it
reduces the degree of multiplicity adjustment.
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9.7. SIDEScreen procedure

It was pointed out earlier in this section that the SIDESbase procedure defined in Table VIII tends to
perform best in biomarker analysis problems with a relatively small number of candidate biomarkers.
The SIDEScreen procedure serves as an extension of SIDESbase, which is designed to efficiently handle
much larger sets of candidate biomarkers.

The SIDEScreen procedure is set up as a two-stage procedure, which applies the SIDESbase algo-
rithm at the first stage without complexity control to generate a large collection of promising subgroups.
A biomarker screen is introduced at the end of the first stage to filter out the biomarkers that are
poor predictors of treatment response. The biomarker screen helps reduce the level of ‘background
noise’ associated with the non-informative covariates. In the second stage, the SIDESbase algorithm
is applied to the selected biomarkers with stronger predictive properties to arrive at the final set of
patient subgroups.

The biomarker screen is applied by computing the VI score for each candidate biomarker.
A biomarker’s VI score is defined as the average value of the splitting criterion over all subgroups included
in the final set. This approach takes advantage of the fact that only a small number of the candidate
biomarkers demonstrate predictive ability and can be used for identifying treatment responders. More
formally, consider the patient subgroups in the final set and denote them by S1,… , Sm. The VI score for
the biomarker Xi is defined as

VI(Xi) =
1
m

m∑
j=1

𝜆ij, i = 1,… , p.

Here, 𝜆ij quantifies the predictive ability of the biomarker Xi within the final subgroup Sj. Specifically, 𝜆ij
is equal to the value of the adjusted splitting criterion for the best split in this subgroup (on the negative
log scale), that is, − log(d̃j), if Xi contributes to this subgroup and 0 otherwise.

Biomarker screens help considerably improve the performance of SIDEScreen compared to SIDES-
base because VI scores help distinguish strong predictors of treatment response associated with higher
values of the splitting criterion from noise covariates. Another important feature of VI scores is that they
provide a comprehensive characterization of the predictive properties of a given biomarker. As indicated
above, VI scores are computed by averaging contributions of a biomarker over the entire set of final sub-
groups. Even though the biomarker may not exhibit predictive properties at top levels of the subgroup
search algorithm, it may turn out to be a stronger predictor in subgroups identified at deeper levels. This
information will be taken into account when its VI score is computed.

Lipkovich and Dmitrienko [32] defined several biomarker screens that can be utilized within a two-
stage subgroup search procedure. The more efficient approach to filtering out irrelevant covariates, termed
the adaptive biomarker screen, relies on defining a data-driven threshold for the VI scores computed at the
end of the first stage. The threshold is derived from the null distribution of the maximum VI score. Using
a large number of null datasets, the maximum VI score (VImax) is found over all candidate biomarkers
within each null dataset. Let Ê0(VImax) and V̂0(VImax) denote the sample mean and variance of VImax
under the null distribution. The adaptive biomarker screen retains the most important biomarkers that
satisfy the following condition:

VI(X) ⩾ Ê0(VImax) + c
√

V̂0(VImax),

where c is a pre-defined constant. It is common to set c to 1 and the resulting biomarker screen rules is
conceptually similar to the ‘minCV+1SE’ rule used in tree-based and penalized regression models (see
Sections 5.3 and 6.2).

Finally, when performing a multiplicity adjustment to control the probability of incorrect subgroup
discovery within the SIDEScreen procedure, it is critical to account for both stages of the algorithm used
in this procedure. Multiplicity control is performed within the SIDEScreen approach by accounting for
the subgroup assessment and biomarker screen in the first stage of the algorithm as well as the subgroup
identification in the second stage. A permutation-based method used in Step 3 of SIDESbase is now
applied to the entire two-stage subgroup search algorithm to compute the multiplicity-adjusted treatment
effect p-values in the final set of subgroups selected after the second stage.
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10. Application of subgroup discovery methods

This section illustrates the subgroup discovery methods defined in Sections 6 through 9 by applying
them to the two case studies introduced in Section 3. It is important to note that the current implemen-
tation of these methods may be limited to a particular type of outcome variables. For example, the VT
method is currently applicable only to continuous and binary outcomes. By contrast, the general SIDES
method supports subgroup identification in trials with continuous, categorical, count-type, and time-to-
event endpoints. For this reason, the subgroup discovery methods were applied to the two case studies
as follows:

• Case study 1 (binary outcome): SIDES method (Sections 9.1 and 9.7), penalized regression methods
(Section 6.2), VT method (Section 6.4), and OWL method for OTRs (Section 8.1).

• Case study 2 (survival outcome): SIDES method (Sections 9.1 and 9.7) and IT method (Section 7.1).

The subgroup discovery methods were implemented using open-source software, including r packages
available on the Comprehensive R Archive Network (CRAN) web site:

http://cran.r-project.org

In addition, r programs kindly provided by the developers of the individual methods were used in this
section. The code can be found on the Biopharmaceutical Network web site at

http://biopharmnet.com/subgroup-analysis/

10.1. Application of the SIDES method to Case study 1

The general SIDES method (SIDESbase and SIDEScreen procedures) defined in Sections 9.1 and 9.7
was applied to examine the dataset in Case study 1 to identify patient subgroups with enhanced efficacy.
The SIDESbase and SIDEScreen procedures were implemented using the r package RSIDES.

The SIDESbase procedure was applied with the following parameters:

• Splitting criterion: differential criterion defined in Equation (22).
• Maximum number of promising child subgroups retained for each parent group (width): M = 5.
• Maximum number of levels (depth): L = 2.
• Maximum unadjusted treatment effect p-value (one-sided): pmax = 0.1.
• Complexity parameter: 𝛾 = 0.5.
• Constraints on the subgroup sample size: smallest sample size in the any of the two child subgroups

formed by a split: nboth
min = 30; smallest sample size in the best of the two child subgroups: nbest

min = 60.
• Number of permutations to compute multiplicity-adjusted p-values: K = 10, 000.

The values of the algorithm parameters listed previously can be considered standard choices. For
example, the depth parameter L was set to 2 to avoid hard-to-interpret subgroups. The constraints on the
subgroup sample size were introduced to prevent erratic behavior of the test statistics, which is expected
when smaller datasets are examined. Because pmax = 0.1, the treatment effect within the subgroups was
expected to be significant at a one-sided level of 0.1. Note that this restriction was applied to the final
set of subgroups rather than to the promising subgroups at the intermediate stages of the SIDESbase
algorithm. In general, the effect of this constraint on SIDESbase is rather cosmetic. However, pmax plays
an important role in SIDEScreen because it affects the list of subgroups used for computing VI scores
(subgroups with a non-significant treatment effect are excluded from the computation).

Like many methods based on recursive partitioning, SIDES can handle missing values in the dataset,
in contrast with parametric regression approaches where all cases with at least one missing covariate
should be deleted or missing values imputed. However, a rather simplistic approach was used in this
particular case.

• For a nominal covariate X with missing values, an additional category ‘missing’ was created that
captured all patients with missing values of X.

• For an ordinal/continuous covariate X with missing values, the splitting criterion was evaluated for
all allowable splits on the set of patients with a non-missing X. Once an optimal split c was found,
the child subgroups were formed as L(c) = {X ⩽ c and X is not missing} and H(c) = {X >
c and X is not missing}. Therefore, patients with missing values of X were not included in subgroups
defined using this biomarker.
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Table IX lists the four subgroups identified by SIDESbase and their characteristics, including the orig-
inal and multiplicity-adjusted one-sided p-values. This table shows that the top subgroup identified by
SIDESbase was defined using the biomarkers X1 (patient’s age) and X2 (time from the first organ failure).
The unadjusted treatment effect p-value in this subgroup was 0.0020; however, the treatment difference
was no longer significant after an adjustment for selection bias was applied and the multiplicity-adjusted
p-value equalled 0.3762. In other words, when the subgroup search algorithm was applied to 10,000 null
datasets without a treatment effect, the p-value in the best subgroup was less than or equal to 0.0020
about 37.6% of the time. The non-significant multiplicity-adjusted p-value suggested that the apparent
treatment effect in the top subgroup was most likely due to selection bias.

It is instructive to compare the basic subgroup search procedure (SIDESbase) to the more advanced
procedure (SIDEScreen). SIDEScreen is a two-stage procedure which first evaluates the predictive ability
of the candidate biomarkers (by computing the VI score for each biomarker) and then performs sub-
group search based on the most relevant biomarkers that are associated with the highest variable (VI)
importance scores. When computing the VI score in the first stage of the procedure, it is important to
examine a broader search space. This is accomplished by disabling complexity control to generate the
largest possible number of subgroups.

The SIDEScreen procedure was applied to the dataset in Case study 1 with the same options that were
used in SIDESbase. However, the following options were modified:

• Maximum number of levels (depth): L = 3.
• Maximum unadjusted treatment effect p-value (one-sided): pmax = 1.
• Complexity parameter: 𝛾 = ∞.

As pointed out earlier, complexity was not controlled in the first stage of the SIDEScreen procedure
because 𝛾 was set to ∞.

A total of 64 subgroups was generated in the first stage of SIDEScreen based on the SIDESbase algo-
rithm and the VI score were computed for each of the 11 candidate biomarkers. To define an efficient
(adaptive) biomarker screen, the reference distribution of the VI scores was computed by running SIDES-
base on 1000 null datasets. Figure 7 displays the VI scores along with the benchmarks derived from
the reference distribution (the biomarkers are arranged by the VI score). The benchmark values were

Table IX. Overall population and patient subgroups identified using the SIDESbase
procedure in Case study 1.

Treatment effect p-value (one-sided)

Subgroup Size Test statistic Unadjusted p-value Adjusted p-value

Overall population 470 −0.96 0.8301 NA
{X2 ⩽ 31 and X1 > 60} 123 2.89 0.0020 0.3762
{X1 > 60 and X2 > 2.2} 70 2.88 0.0020 0.3794
{X2 ⩽ 31 and X10 > 0} 88 2.66 0.0039 0.4621
{X3 > 244} 92 1.70 0.0453 0.6224

Figure 7. Variable importance scores (dark gray bars) and associated benchmarks (light gray bars) in the first
stage of the SIDEScreen procedure in Case study 1.
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Table X. Patient subgroup identified using the SIDEScreen procedure in Case study 1.

Treatment effect p-value (one-sided)

Subgroup Size Test statistic Unadjusted p-value Adjusted p-value

{X2 ⩽ 31 and X1 > 60} 123 2.89 0.0020 0.0444

computed using the following algorithm which follows algorithms used in resampling-based step-down
multiple testing procedures (Westfall and Young [97]):

• Beginning with the top predictor of treatment response shown in Figure 7 (X2), the benchmark value
was given by

Ê0(VImax) + c
√

V̂0(VImax),
where c = 1 and VImax was the maximum VI score over all 11 candidate covariates within each
null set. Further, E0 and V0 were the sample mean and variance of VImax under the null distribution,
respectively.

• For the next predictor (X1), the benchmark was computed similarly, and the only exception was
that the maximum VI score was found over the remaining 10 biomarkers (in other words, X2 was
excluded).

• For the third predictor (X9), the benchmark was derived using the maximum VI score computed over
the remaining nine biomarkers, and so on.

It follows from Figure 7 that the VI score was greater than the benchmark values for only two biomarkers
(X1 and X2). This means that the adaptive biomarker screen retained X1 and X2. The other candidate
biomarkers were dropped at the end of the first stage of SIDEScreen as non-informative.

The SIDESbase algorithm was applied to the biomarkers X1 and X2 in the second stage of SIDEScreen
and identified a single subgroup, namely, {X2 ⩽ 31 and X1 > 60}. This subgroup is identical to the top
subgroup listed in Table X. In order to obtain the multiplicity-adjusted p-value for the treatment effect test
in this subgroup, additional 10,000 null datasets were generated from the original date set by randomly
permuting the treatment labels and the two-stage procedure was applied to each dataset. Specifically,
SIDESbase was applied with the same parameters that were used in the analysis of the original data, and
the biomarkers were screened using the benchmarks displayed in Figure 7. The resulting multiplicity-
adjusted p-value reflected the proportion of the null datasets where the SIDEScreen procedure selected
a patient subgroup with a treatment effect p-value, which was as significant or more significant than the
p-value in {X2 ⩽ 31 and X1 > 60}, that is, 0.0020. The adjusted p-value was equal to 0.0444 and is
presented in Table X.

It is clear that the adjusted p-value in the subgroup {X2 ⩽ 31 and X1 > 60} produced by the SIDEScreen
procedure (Table X) is considerably smaller compared with the adjusted p-value based on the SIDES-
base procedure (Table IX). This should come as no surprise since SIDEScreen is considerably more
efficient (less greedy) than SIDESbase. The former utilizes a powerful biomarker screen that effectively
shrinks the search space and reduces the multiplicity burden and, subsequently, results in a more efficient
multiplicity adjustment.

10.2. Application of penalized regression methods to Case study 1

Penalized logistic regression models introduced in Section 6.2 were applied to Case study 1 to identify
covariates that are predictive of treatment response and define subsets of the overall patient population
with a positive treatment effect. The predictive properties of the candidate biomarkers were examined
using the following two procedures:

• LASSO procedure: logistic regression modeling with the lasso penalty (implemented using the
glmnet package); and

• FINDIT procedure: Logistic regression modeling based on the FindIt method (implemented using
the FindIt package).

The binary outcome variable (28-day survival status) was re-coded as 0 (death) and 1 (survival) when
the glmnet package was used and as −1 (death) and +1 (survival) when the FindIt package was used.

The feature space for regression modeling was defined using the same approach which was utilized
in the artificial example presented in Section 6.2. The feature space included the treatment indicator, 11
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candidate biomarkers, two-way biomarker interactions as well as interactions of the individual biomark-
ers and their two-way interactions with the treatment indicator. This resulted in a total of 155 variables
in the model (note that the intercept was left ‘unpenalized’).

One significant limitation of penalized regression methods (and regression methods in general) is
that no missing values are allowed in a dataset. As a result, the missing biomarker values needed to be
imputed prior to applying these methods. A more principled approach would involve ‘embedding’ a sub-
group identification procedure based on penalized regression within a multiple imputation framework.
To achieve consistency across the global outcome modeling methods presented in this section (penalized
regression and VT), missing covariate values were imputed in this case study using the same random
forest-based method, which will be later applied in Section 10.3. This method was implemented using
the native rfImpute function from the randomForest package.

Another important difference between tree-based subgroup identification procedures such as SIDES
and regression-based procedures is that a biomarker with a highly skewed distribution and/or outlying
values may exert undue influence on a regression model, which results in biased estimates of the model
parameters. To ameliorate this problem, it is recommended to transform biomarkers with irregular distri-
butions, for example, to apply a log transformation. By contrast, as emphasized in Section 5.3, tree-based
approaches are invariant to monotone covariate transformations. In this particular case, a log transforma-
tion was applied to X2 (time from the first organ failure to the start of study drug administration) before
it was added to the feature space.

Beginning with the LASSO procedure, a 10-fold cross-validated binomial negative log-likelihood
was used to select optimal values of the penalty parameter. The optimal values (𝜆min and 𝜆min1se) were
computed as in Section 6.2. The selection process is illustrated in Figure 8.

With a conservative penalty based on 𝜆min1se, none of the predictive variables, that is, treatment-by-
biomarker interactions, were included in the final model. When the penalty parameter was set to 𝜆min, sev-
eral treatment-by-biomarker interaction terms were selected. Figure 9 shows the variables in the feature

Figure 8. Ten-fold cross-validated negative log-likelihood as a function of the log-transformed penalty parameter
𝜆 in Case study 1. The vertical lines correspond to 𝜆min (left line) and 𝜆min1se (right line). The error bars repre-
sent the standard errors. The values shown in the upper horizontal axis are the numbers of non-zero coefficients

resulting when the penalty (log(𝜆)) is set at values shown in the lower horizontal axis.

Figure 9. Coefficients estimated by the LASSO procedure (penalized logistic regression model with the penalty
parameter set to 𝜆min) in Case study 1 (T denotes the treatment variable).
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Figure 10. Distribution of the individual treatment contrasts computed using the random forest method in
Case study 1.

space selected by the LASSO procedure when the penalty parameter was set to 𝜆min. The predictive
effects are represented by the black bars. We can see that the strongest predictors of treatment effect
were the interaction between X3 (baseline platelets) and X11 (baseline bilirubin), the interaction between
log X2 (time from the first organ failure) and X8 (GLASGOW score) and X1 (patient’s age). Recall that
the SIDES-based procedures also identified X1 and X2 as the most promising predictors of a differential
treatment effect in Section 10.1. Although, the interaction of the treatment indicator with log X2 was also
selected by the LASSO procedure, it was mixed with another biomarker.

An application of the FINDIT procedure to Case study 1 revealed that no treatment-biomarker inter-
actions were strong enough to be included in the final model. Interestingly, when the non-transformed
version of X2 was used, several interaction effects were selected and the results were very similar to
those for the LASSO procedure with 𝜆min shown in Figure 9. This example underscores the sensitivity
of regression-based subgroup identification methods to data anomalies.

10.3. Application of the VT method to Case study 1

This section presents an application of the VT method introduced in Section 6.4 to the problem of sub-
group selection in Case study 1. The analysis dataset contained the binary outcome variable Y with values
1 (survival) and 0 (death). The set of covariates or inputs to be ‘fed’ into the random forest algorithm
consisted of 11 continuous biomarkers X1,… ,X11, treatment indicator T with values 1 (treatment) and 0
(control) and two sets of treatment-by-biomarker interactions XjT and Xj(1−T), j = 1,… , 11. The latter
were added based on the recommendation in [43] who found that precomputing treatment-by-covariate
interactions appeared to facilitate the random forest algorithm. Because the current implementation of
the random forest method in the r package randomForest assumes that all candidate biomarkers contain
no missing values, the first step in the application of the VT method was to create a complete dataset.
The imputation of the missing values was performed using the procedure utilized earlier in Section 10.2.
This procedure relies on the Random Forest method to impute values in a way that is consistent with the
‘model’ fitted by the same method. After the missing biomarker values were imputed, the VT method
was applied using the r code provided by one of the authors of this method (Dr. Jared Foster). The code
is publicly available on the biopharmaceutical network web site.

Random forest was applied to the dataset in Case study 1 to compute the individual treatment contrast
z(𝐱) for each patient. The contrast was defined as the difference between the predicted 28-day survival
rates when the patient is assigned to the treatment and control arms. It is instructive to examine the
distribution of the individual treatment contrasts, for example, to check whether any obvious clustering
can be detected (e.g., clusters of super responders). In addition, it is helpful to plot the contrasts against
important biomarkers to gain insight into their predictive properties. For illustration, Figure 10 displays
the distribution of the individual treatment contrast in the severe sepsis dataset. The vertical line defines
the minimal clinically important difference on an absolute scale, which was set to 𝛿 = 0.06. This value
is commonly used in severe sepsis trials (this absolute difference corresponds to a relative risk reduction
of 20% if the 28-day survival rate in the placebo arm is 30%).

To perform a quick univariate assessment of the predictive abilities of the candidate biomarkers,
Figure 11 displays plots of the individual treatment contrasts for two important biomarkers, X1 (patient’s
age) and X2 (time from the first organ failure). Note that, as in Section 10.2, a log transformation was
applied to X2 because there were multiple outliers in the dataset. It is generally helpful to study the rela-
tionship between the contrast and selected biomarker to determine if there is a simple way to select a
cutoff to define a subgroup of treatment responders. A visual inspection of Figure 11 suggests that a
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Figure 11. Individual treatment contrasts as functions of the biomarkers X1 and log X2 in Case study 1.

Figure 12. Cross-validation profile for the virtual twins regression trees fitted to the individual treatment contrasts
in Case study 1.

Figure 13. Virtual twins regression trees fitted to the individual treatment contrasts, pruned down to two ter-
minal nodes (left-hand panel) and three terminal nodes (right-hand panel) in Case study 1. Patients who meet
the splitting condition form the left branch, and those who do not form the right branch. The top value
within each terminal node is the treatment difference in the 28-day survival rate, and the lower value is the

subgroup size.

cutoff between 60 and 65 years for X1 and a cutoff at about 3.5 for the log-transformed X2 (corresponding
to a cutoff at 33 h on the original scale) may be reasonable as they corresponded to the treatment contrast
of 0. For example, patients who were older than 60–65 years of age tended to experience a beneficial
treatment effect whereas patients in the complementary subgroup did not.

Continuing to the second stage of the VT method, CART models were fitted to the individual treatment
contrasts. The CV profile in Figure 12 suggested that the optimal number of leaves in the VT tree was
either 2 or 3, which corresponded to the cost-complexity penalty of 0.055 and 0.031, respectively.

Figure 13 displays the VT tree pruned down to two and three leaves. The figure presents the aver-
age value of the outcome variable, that is, the treatment difference in the 28-day survival rate predicted
by random forest, and the number of patients for each subgroup. For example, within the subgroup
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Table XI. Expected improvement in the 28-day survival rate in the subgroup {X1 ⩾ 62 and
X2 < 33} over the overall patient population computed using the VT method in Case study 1.

Estimate of the treatment benefit

General estimation approach Re-substitution Bootstrap bias-corrected 0.632 estimate

Model-based approach 0.154 0.134 0.141
Data-based approach 0.321 0.273 0.197

{X1 ⩾ 62 and X2 < 33}, the predicted treatment difference in the survival rate was 14%. Applying the
pre-specified criterion with the clinically relevant difference 𝛿 = 0.06 to the tree with two leaves returns
no subgroup and for the tree with three leaves results in a patient subgroup based on the terminal node
defined by splits on X1 and X2:

Ŝ = {X1 ⩾ 62 and X2 < 33}.

This subgroup evaluated from the tree with three terminal nodes (leaves) is practically identical to the
top subgroup identified by the SIDES method (Tables IX and X).

After the most promising subgroup with a clinically important beneficial effect was identified, the
next step was to produce a reliable estimate of the treatment difference within this subgroup using the
methodology presented in Section 6.4. The treatment benefits in Ŝ were computed using the model-based
(i.e., random forest-based) and data-based approaches. The corresponding estimates of Q(Ŝ) were first
found using the naive re-substitution methods, which were then adjusted by the bootstrap bias-corrected
procedures. Note that the VT method should be applied to each bootstrap sample exactly the same way
as it is applied to the observed data. In particular, the selection of a subgroup based on a regression tree
should proceed with no ‘human intervention’ based on a pre-defined rule. For example, a rule can be
defined as follows: ‘prune the tree using the value of the cost-complexity parameter (c) that minimizes
the CV error and select terminal nodes with the treatment effect exceeding the pre-defined 𝛿, if any’. This
rule should be applied across all bootstrap samples. However, performing CV within each sample may
be computationally prohibitive, and the method’s authors suggested using a fixed pre-specified value of
c = 0.02 that appeared to work well in simulations. With c = 0.02, a tree with four terminal nodes was
selected in this example, and the same subgroup was identified as the subgroup based on the c suggested
by CV. Therefore, we applied bootstrap correction with default value of c = 0.02.

The resulting estimates of the treatment benefit in the subgroup Ŝ are shown in Table XI. The table
lists the expected improvement in the 28-day survival rate in the identified subgroup over the overall
patient population. As expected, Table XI shows that the re-substitution estimate of the treatment benefit
was more conservative when the model-based approach to estimating of Q(Ŝ) was considered, compared
with the data-based approach (15.4% versus 32.1%). The value of 32.1% is computed simply by sub-
tracting the overall treatment difference in survival rates (−4.5%) from the treatment difference observed
in the identified subgroup (27.6%). Note that this observed difference turned out to be much larger than
the model-based difference of 14% estimated by the random forest algorithm (shown in Figure 13).
Interestingly, while the data-based re-substitution estimate shrunk considerably when the basic bootstrap
bias-correction procedure was applied (from 32.1% to 27.3%), the model-based estimate did not change
much. When the bootstrap procedure based on the 0.632 estimator, which balances the re-substitution and
‘out-of-bag’ estimators, was applied, the model-based and data-based estimates appeared more consistent
(14.1% and 19.7%, respectively).

10.4. Application of the outcome-weighted learning method for OTR to Case study 1

This section applies a simple OTR model for clinical trials with binary outcomes defined in Section 8.1
(Equation (20)) to Case study 1. Using the terminology introduced in [89], this approach corresponds to
‘case-control weighting’ because both cases and controls are utilized for estimating the optimal treatment
assignment rule.

To estimate the coefficients of the penalized logistic model with the lasso penalty and patient-specific
weights defined in (20), the glmnet package was utilized. The set of candidate predictors included the
original 11 biomarkers plus 56 second-order covariate interactions and 11 squared covariates, resulting
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Table XII. Penalized logistic regression models for optimal treatment
regimes with the lasso penalty in Case study 1.

Estimated regression coefficients based on 𝜆 = 𝜆min

Selected model term Model 1 Model 2

Intercept −0.1107 −0.0890
X3X11 −0.1627 0
X1 0.1140 0.0690
X1X10 −0.0771 0
X1X7 0.0650 0
log X2 −0.0551 −0.0370
X11X5 −0.0517 0
X9X11 −0.0436 0
X10 log X2 −0.0340 0
X8 log X2 −0.0236 0
X7X3 0.0078 0

in the total of 77 terms. As in other applications of penalized regression (Sections 6.2 and 10.2), 10-fold
CV was used to choose an optimal penalty. The following models were considered:

• Model 1 included the full feature space described above as initial set of candidate predictors and
estimated the coefficients with the lasso penalty parameter set to 𝜆min (minimum of cross-validated
negative log-likelihood) resulting in 10 non-zero coefficients.

• Model 2 was a simpler model that excluded the interaction and quadratic terms from the feature
space and the penalty parameter was also set to 𝜆min resulting in two non-zero coefficients besides
the intercept.

The regression coefficients in Models 1 and 2 are listed in Table XII. The selected model terms are ordered
by the absolute value of the regression coefficient in Model 1 (note that the coefficients correspond to the
standardized values of the variables).

Based on the models defined in Table XII, patients should be allocated to the treatment (t = 1) if the
linear combination based on the estimated regression coefficients is positive and to the control otherwise.
Focusing on Model 1, patients of older age (based on X1) with lower values of log X2 (log-transformed
time from the first organ failure) should benefit from the experimental treatment. Interestingly, there
were some important interaction effects of X1 (age) with X10 (activity of daily living score) and X7 (acute
physiology and chronic health evaluation II score), which were negative. Given that higher values of age
were associated with a beneficial treatment effect, we can conclude that the treatment effect may be further
enhanced by considering patients with lower values of X7 and X10. The interpretation of the interaction
effects is complicated by the fact that the lasso model does not obey the hierarchy principle which requires
interactions must be considered only if the associated main effects are included in the model. For example,
since the interaction term X3X11 is included with a negative coefficient and none of the main effects is
in the model, one can only conclude that patients would benefit from the experimental treatment if they
score larger than average on X3 (baseline platelets) and less than average on X11 (baseline bilirubin) or
vice versa, which sounds a bit confusing. Forcing the regression coefficients for the main effects into the
model would facilitate the interpretation of the results and could potentially result in eliminating some of
the interaction terms. To facilitate the interpretability, one may consider recent modifications of the lasso
method that would enforce hierarchy, see, for example, [98, 99]. These methods are implemented in the
r packages hierNet and glinternet, respectively.

It is instructive to compare the two models presented in Table XII with the results of global outcome
modeling based on the lasso method reported in Figure 9. The results are generally comparable in that
the most predictive effects in Figure 9, that is, the interaction terms that include the treatment indicator
and covariates X1, log(X2), X11, X3 also appear in Table XII with the same signs and a comparable order
of magnitude.

Considering Model 2 in Table XII, the same main effects that were selected in Model 1 were also
included in this model, that is, X1 and log X2. The same two biomarkers were identified as strong pre-
dictors of a beneficial treatment effect using the SIDES and VT methods in Sections 10.1 and 10.3. The
signs of the regression coefficients for X1 and log X2 indicate that older patients with a shorter time from
the first organ failure to the start of drug administration should allocated to the treatment. Recall that

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016



I. LIPKOVICH, A. DMITRIENKO AND R. B. D’AGOSTINO, SR.

Table XIII. Bootstrap-based confidence inter-
vals for the expected treatment effects based
on the optimal treatment assignment rules for
Models 1 and 2 in Case study 1.

Model 95% CI for d−(𝜷) 95% CI for d+(𝜷)

Model 1 [−0.001, 0.558] [0.037,1.00]
Model 2 [−0.004, 0.355] [0.025, 0.73]

the subgroups of patients who are likely to experience an improvement suggested by the SIDES and VT
methods were

{X2 ⩽ 31 and X1 > 60} and {X2 < 33 and X1 ⩾ 62},

respectively. By comparison, after converting X1 and log X2 to the original units, the following simple
treatment assignment rule was derived based on Model 2:

• Assign a patient to the experimental treatment if X1 − 6.6 log X2 − 56.7 ⩾ 0.
• Assign a patient to the control if X1 − 6.6 log X2 − 56.7 < 0.

Further, to assess whether the treatment assignment rule based on Model 1 provides a substantial
improvement over to a simpler rule based on Model 2, 95% bootstrap confidence intervals were computed
for the average treatment effects d+(𝜷) and d−(𝜷) that were defined in Equation (21). Given that the
outcome variable is binary in this case study, these quantities were measured on a probability scale. In
particular, d+(𝜷) was the treatment contrast in the subgroup of patients assigned to the treatment arm,
that is, patients with z(𝐱|𝜷) ⩾ 0, with larger values indicating a beneficial effect of the experimental
treatment. Similarly, d−(𝜷) was the treatment contrast in the control arm, that is, z(𝐱|𝜷) < 0, with larger
values indicating a beneficial effect of the control treatment.

The confidence intervals for the average treatment effects are shown in Table XIII. It follows from this
table that the treatment assignment rules based on Models 1 and 2 appeared beneficial for the patients
assigned to the experimental treatment because the 95% confidence intervals for d+(𝜷) excluded zero.
On the other hand, the benefits of assigning patients to the control arm were not obvious because the
lower limits of the 95% confidence intervals for d−(𝜷) were negative. This finding, therefore, may be
especially useful for the trial’s sponsor. The second observation is that because the conclusions from the
two models are qualitatively similar, the advantage of a more complex treatment assignment rule based
on Model 1 does not appear strong enough to justify including the interaction terms in the model.

10.5. Application of the SIDES method to Case study 2

This section and Section 10.6 provide illustrations of subgroup identification methods in the context of
Case study 2 with a time-to-event outcome. An important feature of Case study 2 is that the treatment
effect in the overall population was positive and marginally significant with the hazard ratio of 0.85 (a
lower value of the hazard ratio indicates a beneficial effect). The associated one-sided log-rank p-value
was 0.0367.

We will begin with the SIDES method and apply the two-stage SIDEScreen procedure with a biomarker
screen to the problem of exploring subgroups of patients with enhanced treatment effect based on the 14
biomarkers listed in Table II. The first stage of the procedure was based on SIDESbase with the parameters
that were identical to the parameters used in Section 10.1.

Figure 14 plots the VI scores of the candidate biomarkers. As in Figure 7, the biomarker-specific
benchmark values estimated from the null distribution helped select the covariates with strong pre-
dictive properties. The VI scores exceeded the benchmarks for X3 (cytogenetic category) and X13
(IPSS-R). These covariates passed the biomarker screen and were selected for the second stage of the
SIDEScreen procedure.

Because the overall treatment effect was quite large, it was sensible to focus on subgroups with the
treatment effect that was greater than that in the overall population. In order to carry over the overall
treatment effect to the reference (null) sets, the sets were constructed by permuting the covariate columns
rather than the treatment labels. Recall that permuting the treatment labels creates a homogeneous treat-
ment effect across all subsets of the overall population, which is not relevant in this setting given that all
subgroups would then inherit the overall treatment effect. Multiplicity-adjusted p-values in the subgroups
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Figure 14. Variable importance scores (dark gray bars) and associated benchmarks (light gray bars) in the first
stage of the SIDEScreen procedure in Case study 2.

Table XIV. Overall population and patient subgroups identified using the SIDEScreen
procedure in Case study 2.

Test Hazard
Treatment effect p-value (one-sided)

Subgroup Size statistic ratio Unadjusted p-value Adjusted p-value

Overall population 599 1.79 0.849 0.0367 NA
{X13 > 3 and X3 ⩽ 4} 220 4.46 0.513 0.000004 0.001
{X13 > 3} 329 4.31 0.596 0.000008 0.004
{X3 > 2} 312 4.04 0.614 0.00003 0.010
{X3 > 2 and X13 > 3} 272 3.11 0.666 0.0009 0.072

of interest were computed using K = 1000 null datasets where all covariate columns were randomly per-
muted. As a result, both prognostic and predictive covariate effects were removed; however, the overall
treatment effect and correlations among the covariates were retained in each null set.

The results are summarized in Table XIV. The top subgroup identified by the SIDEScreen procedure
was {X13 > 3 and X3 ⩾ 4}, which corresponded to a very high IPSS-R score and poor or better cyto-
genetic category (Table II). It is important to note that another subgroup was also based on these two
variables, namely, {X3 > 2 and X13 > 3}. It may at first appear counterintuitive that patients with a larger
value of X3 experienced a beneficial treatment effect. However, the subpopulation defined by these cut-
offs was driven by a large treatment effect in patients with X3 = 3 (intermediate) and X3 = 4 (poor). The
overlap between the above groups, as measured by the Jaccard similarity index (intersection-to-union
ratio) was about 50%.

10.6. Application of the IT method to Case study 2

To illustrate the IT procedure, the three-step algorithm defined in Section 7.1 was applied to Case study 2.
Note that the IT procedure currently does not allow missing values in the candidate covariates, and
therefore, eight records with unknown levels of X13 had to be deleted from the dataset.

The initial tree was grown using the grow.INT function from the suite of r functions kindly provided
by Dr. Xiaogang Su and available on the biopharmaceutical network web site. The function was called
with the following parameters:

• min.ndsz=20 (minimum number of observations for claiming a terminal node);
• n0=10 (minimum number of observations in each treatment arm within either of the two child groups

when splitting a parent node); and
• max.depth=15 (the maximum depth in the subgroup identification algorithm). Note that this

parameter corresponds to the tree height in [71].

Setting max.depth to 15 may appear as an overkill; however, note that the idea here is just to make
sure that the only constraining factor for growing the initial large tree T0 will be the minimal size of
the terminal node. Recall that the final tree will be selected by pruning the initial tree using a principled
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statistical procedure, which takes model complexity into account, and there is no need to impose any
arbitrary pruning on the initial tree by limiting its depth. Also, the actual size of T0 will be limited by
min.ndsz and n0 and might never reach the maximum depth. As shown below, none of the trees grown
on multiple bootstrap samples had more than 13 leaves.

The best-sized tree was selected from the pruned sequence by maximizing the criterion (13) with
𝛼c = log(n), and the bias-corrected estimates of G(Ti), i = 0,… ,M, were obtained using B = 30 bootstrap
samples. The optimal tree had four leaves. For illustration, Figure 15 presents a family of bias-adjusted
criteria corresponding to 𝛼c = 2, 3, 4, log(n) applied to each tree in the sequence.

The optimal tree shown in Figure 16 suggested two promising subgroups with enhanced
treatment effect:

• The first subgroup was associated with the terminal node {X13 ⩾ 3.5 and X3 < 4.5}. Note that, when
a tree is formed by splitting on ordinal biomarkers, the cutoffs may be selected between the actual
levels of a biomarker, which may lead to confusion. A more natural definition of this subgroup would
be {X13 > 3 and X3 ⩽ 4}. This is a large subgroup with n = 220 patients and a strong beneficial effect
(hazard ratio of 0.51). This subgroup was identical to the top subgroup identified by the SIDEScreen
procedure (Table XIV).

• The second promising subgroup was based on three biomarkers. It was comprised of male patients
who had poor values of both Cytogenetic and IPSS-R scores: {X13 > 3 and X3 > 4 and X1 = 1}.
This is a rather small subgroup with n = 59 patients and its usefulness and generalizability may
be questionable.

Figure 15. Selection of the best-sized tree using several bias-adjusted interaction-complexity criteria by the
interaction trees procedure in Case study 2.

Figure 16. The best-sized tree selected by the interaction trees procedure in Case study 2. The hazard ratio (HR)
for the experimental treatment versus control (HR< 1 indicates a beneficial treatment effect) and sample sizes are

displayed within each terminal node.
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11. Summary

We conclude the review of biomarker evaluation and subgroup identification methods in late-stage clinical
trials with some general thoughts.

First of all, it is important to realize that popular approaches to subgroup identification and analysis
come from such diverse fields of research as machine/statistical learning, multiple testing, and causal
inference, and are necessarily linked with specific background and terminology that are common in these
areas. Sometimes seemingly different methods developed by different groups of authors turn out to be
almost equivalent to each other.

11.1. General comparison of subgroup identification methods

To provide a general comparison of different classes of subgroup identification methods, given the amount
of uncertainty and lack of knowledge about subpopulations of patients who may experience enhanced
treatment effect, non-parametric methods (e.g., methods based on recursive partitioning) appear more
flexible and efficient compared with parametric approaches in that they support subgroup exploration
within a very broad ‘model space’. Furthermore, unlike standard recursive partitioning methods (e.g.,
CART) that aim at identifying subgroups with heterogeneous outcome values, partitioning methods for
personalized medicine rely on a variety of splitting criteria that are modified appropriately to focus on
subgroups with a differential treatment effect. This is typically achieved by incorporating treatment-by-
splitting covariate interaction effects.

11.2. Multiplicity adjustment and complexity control

There is increasing demand for multiplicity adjustments in subgroup identification strategies in clinical
trials, which in the past was seen as a rather unusual or unnecessary feature in data-mining/machine-
learning applications. While strict multiplicity control may be virtually impossible to achieve (in the
sense of strong familywise error rate control [22]) owing to the complexity of the model space and diffi-
culty of enumerating all null hypotheses, weak control of the probability of incorrect subgroup selection
associated with a subgroup identification strategy can be implemented based on resampling methods.

Complexity control is another and perhaps even more important principle that applies to subgroup
identification as much as to any exercise of model selection (recall that we consider biomarker/subgroup
selection as a special case of model selection). The fundamental idea behind complexity control in appli-
cations of machine learning is achieving a reasonable trade-off between bias and variance, and the same
principle applies to subgroup identification. Complexity control is also related to the reproducibility prin-
ciple, because lack of constraint on the search space typically results in selecting patient subgroups based
on noise/non-informative biomarkers and, as a result, these subgroups are unlikely to be replicated with
the future data. As part of complexity control, it is important to account for the fact that some biomark-
ers are more likely to be chosen by chance because the sets of unique values vary across the candidate
biomarkers, which may lead to selection bias. Therefore applying a penalty that ‘equalizes’ the probabil-
ity of selection by chance across the biomarkers should be a part of complexity control strategy as well
as multiplicity control.

More generally, multiplicity adjustments ought to be used in combination with controlling the com-
plexity of the subgroup selection process. Performing an unconstrained search for subgroups followed
by a multiplicity adjustment may be an inefficient strategy because

• It may result in identifying patient subgroups that have a low chance of being replicated in an
independent dataset.

• The resulting multiplicity adjustment may be too conservative, which will lead to very large
multiplicity-adjusted treatment effect p-values within the selected subgroups.

As an example, performing a greedy search for subgroups by brute force, that is, by a complete enu-
meration of all possible subgroups that can be formed by, say, up to three biomarkers, is likely to generate
spurious subgroups with highly significant treatment effect p-values. However, the probability of observ-
ing a similar significant treatment effect within these subgroups in another study will be low. Replicating
the entire strategy on the reference (null) data is likely to also generate subgroups with highly signifi-
cant p-values. Therefore, resampling-based multiplicity-adjusted p-values (i.e., the proportion of null sets
with p-values as small as or smaller than the observed p-value) would be relatively large. The approach
described previously needs to be contrasted with less greedy strategies that put an appropriate ‘constraint
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jacket’ on the model space by balancing bias and variance (e.g., methods of penalized regression) result-
ing in less complex subgroups based on fewer biomarkers. The reduced model space results in a lower
multiplicity burden and therefore a smaller multiplicity penalty when computing multiplicity-adjusted
p-values. As a consequence, a modestly significant observed p-value associated with a subgroup based
on constrained subgroup search is likely to translate into a much smaller adjusted p-value compared with
that obtained after unconstrained search.

Several approaches have been proposed recently to avoid ‘greediness’ and overfitting in subgroup
search:

• frequentist methods employing complexity penalties, typically determined by resampling-based
methods, for example, methods based on penalized regression [27, 38, 79] and tree-based meth-
ods [71, 75];

• ensemble learning methods that average over a large number of ‘learners’ to shrink the contribution
of noise covariates to zero [43, 94, 100];

• shrinkage and model averaging via Bayesian methods [25, 47, 77]; and
• methods that use ‘indirect’ or less direct criteria for variable/subgroup selection that avoid exhaustive

search for subgroups with desired features [72].

11.3. Bias-corrected treatment effect estimates

One of the most challenging tasks in subgroup identification is obtaining unbiased and reliable esti-
mates of treatment effects in the selected patient subgroups, known as ‘honest’ estimates. Note that the
estimated effects are typically used in designing future conformation studies, often as part of seamless
Phase II/Phase III development programs. Incorrectly estimated effect sizes may lead to wrong decisions
resulting in wasted time and money and/or lost opportunities both for the sponsor and society in general.
Obtaining such estimates normally requires additional independent (or test) data. When no test datasets
are available, resampling methods (bootstrap or CV) can be applied. When resampling data have been
used for tuning a method’s complexity parameters, the same data cannot be re-used to compute ‘honest’
estimates of treatment effect. In such cases, researchers may resort to double bootstrap or double CV.
As a general principle, when using resampling methods for computing bias-corrected subgroup effects,
it is important that the entire search strategy (including estimation of any data-driven tuning parame-
ters) be implemented afresh on each dataset. As is the case with any method of predictive learning,
accurate predictions (here, individual and subgroup-specific treatment contrast), rather than ‘enforcing’
strict Type I error rate control is the key objective. Different measures of performance or ‘expected
benefit’ can be defined for a given subgroup or predictive biomarker, based on the ultimate goals of
subgroup identification:

• expected treatment effect in a specific subgroup and its excess over that in the overall population;
• utility function evaluated on a subgroup that takes into account the ‘treatment burden’ based on

safety and/or extra costs that may also reflect the minimal clinically meaningful treatment effect in
the subgroup;

• power or predictive power of a future trial where the identified subgroup will be used as part of
a tailoring strategy, for example, the trial may utilize an enrichment design based on this patient
subgroup; and

• value function of the optimal treatment assignment rule based on the identified biomarkers/subgroups
compared with a rule that assigns all patients to the same treatment.

11.4. Missing data

Another important issue that arises in subgroup identification, as much as in any analysis of clinical data,
is proper handling of missing data. Missing values can arise both in the set of covariates and outcomes
(the latter typically due to loss to follow up). Most methods presented in this tutorial do not explicitly
handle missing outcomes and typically assume the last observed value, which is prone to selection bias
unless missingness is completely at random.

However, some general methods such as inverse probability (of censoring) weighting or multiple impu-
tation can be used in conjunction with many of the proposed methods. This requires additional modeling
steps to be completed prior to data analysis and brings additional challenges. For example, it is not clear
how to integrate the results of subgroup analysis across multiply imputed datasets.
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Handling missing covariates is a more challenging issue for subgroup identification methods given that
they thrive on covariate information. Methods based on parametric modeling would have to dispense with
the entire patient record as long as a single missing biomarker is present, unless imputation techniques
are used to complete the biomarker profile. Some methods may have ‘built-in’ imputation strategies
such as the VT method [43] that imputes missing data using a generic imputation method of random
forest. Tree-based methods are less affected by missing covariates in that they do not require deletion of
incomplete profiles. However, their performance may be severely affected by simply ignoring missing
values when evaluating candidate splits. Some tree-based methods, including the methods based on the
GUIDE platform [72]), use missingness as a distinct category (that the tree algorithm can split on), which
may be a better alternative to ignoring missing observations.

More research is warranted to better understand the impact of different missingness mechanisms and
develop principled methods for dealing with missing data in the context of subgroup identification. Sensi-
tivity analysis that can be implemented using imputation procedures enhanced with sensitivity parameters
quantifying possible departures from misssingness at random can be useful to evaluate the potential
impact of missing data on the selected subgroups and treatment effect estimates within these subgroups.

11.5. Key features of subgroup identification methods

To help the reader navigate through the thick forest of emerging subgroup identification methods, we
propose a check list of several important features that should be examined for any prospective method.
These features are defined as follows:

(1) modeling type: Freq (Frequentist), Bayes (Bayesian); P (parametric), SP (semiparametric), NP
(nonparametric);

(2) dimensionality of the covariate space: low, medium, high;
(3) results produced by the method: B (selected biomarkers or biomarker ranking based on VI scores

that can be used for tailoring), P (predictive scores for individual treatment effects), T (optimal
treatment assignment), S (identified subgroups);

(4) evaluation of the Type I error rate/false discovery rate for the entire subgroup search strategy: yes,
no;

(5) application of complexity control to prevent data overfitting: yes, no;
(6) control (reduction) of selection bias when evaluating candidate subgroups: yes, no;
(7) Availability of ‘honest’ estimates of treatment effects in identified subgroups: yes, no; and
(8) availability of software implementation: C (r package available on the CRAN web site), B (r code

available on the biopharmaceutical network web site), P (proprietary).

Note that most methods are associated with a combination of letters when the third category is consid-
ered, for example, ‘B, P’ means that the method selects predictive biomarkers and constructs predictive
score. Also, the descriptor ‘B, S’ may appear redundant since the knowledge of subgroups (S) implies
knowledge of predictive biomarkers (B); however, some methods may report a broader set of selected
biomarkers including ‘overlapping’ variables that may be ‘eliminated’ at the subgroup construction stage.

Table XV provides information on these features for several commonly used subgroup identification
methods, most of which were considered in this tutorial. The methods are broken into four classes based
on the taxonomy of subgroup identification methods introduced in Section 4.3. This classification of
available methods provides some insight as to the situations when different methods may be particularly
applicable. For example, methods that evaluate optimal regimes are useful in large Phase III or IV trials
that compare several active treatments in a diverse population. Methods that utilize penalized regression
and ensemble learning can handle very large sets of candidate covariates. As a consequence, these meth-
ods can be used in settings where the sample size is rather small, including early-stage trials, and the
main focus is on selecting biomarkers rather than specific patient subgroups that can be utilized in sub-
sequent Phase III trials. Tree-based methods are useful when there are a few candidate biomarkers, for
example, 15–20 biomarkers, in relatively large datasets (say, with 1000–2000 patients) and subgroups
can be reliably estimated. Evaluation of biomarkers using Bayesian shrinkage regression models such
as models studied in [77] is well suited to evaluating post-hoc hypotheses or meta-analysis with a rela-
tively small number of subgroups defined by units where the exchangeability assumption is reasonable.
Examples include studies that focus on the effect of multiple countries or demographic groups.

Although the methods presented in this table were developed mainly for clinical trial settings with
random treatment assignment, some of these methods are easily extended to observational studies where
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the treatment choice is determined by a prescribing physician and may be driven by patient-level char-
acteristics. For example, within the outcome weighted learning framework, the probability of treatment
assignment is explicitly incorporated in the outcome-based weights, and in the context of observational
data, this probability can be estimated using propensity score modeling from the available data.

We hope that the feature list would prove useful and applicable not only for the methods considered
in this tutorial but also to those that were not covered as well as new methods that will be developed in
the future.

11.6. Operating characteristics of subgroup identification methods

While we did not attempt to evaluate operating characteristics of available subgroup identification and
biomarker evaluation methods that should require a comprehensive simulation study, we feel it will be
useful to list key criteria or operating characteristics that can be used for evaluating the performance of
these methods. The ideas presented in the succeeding text are based on those found in the literature on
subgroup identification (for example, [27,43,72,82,94]) and our own experience in this area. The criteria
can be divided into several domains:

(1) Biomarker/subgroup level. How well are the predictive biomarkers and specific signatures, that
is, biomarkers and associated cutoffs, identified? For example, how often are the true predictive
biomarkers/signatures selected (power) and how often are irrelevant biomarkers incorrectly iden-
tified as predictive biomarkers (Type I error rate)? For the latter, it is important to evaluate the
presence and impact of selection bias, that is, whether or not the probability of selecting noise
variables with different sets of candidate splits is the same.

(2) Subject level. How closely are the patients included in the ‘true’ subgroup approximated with the
identified subgroup? Relevant performance measures include sensitivity (percent of patients in the
true subgroup among those included in the selected subgroup) or specificity (percent of patients
not in the true subgroup among those not included in the selected subgroup).

(3) Treatment effect level. What is the excess of the treatment effect in the selected subgroup compared
with the overall population effect (for example, the performance measures proposed in [94]).

(4) In the context of evaluating an optimal treatment policy/regime, what is the expected treat-
ment effect resulting from the treatment assignment based on the estimated individual treatment
regime [27]? The agreement between the true and estimated regimes can be evaluated as the per-
cent of patients with the correct treatment decision if the treatment assignment is based on the
estimated treatment regime.

When comparing characteristics of different subgroup identification and biomarker evaluation meth-
ods, it is critical to consider the general features (1–8) summarized in Table XV as well as the operating
characteristics listed previously in a consistent way. A discussion of approaches to a comprehensive com-
parison of operating characteristics of several applicable methods using the same battery of real and
simulated datasets is an important topic for future research.
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