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Appendix C

HOW EFFECTIVE IS USING A CONVENIENCE SAMPLE
TO SUPPLEMENT A PROBABILITY SAMPLE?

The appeal of Web-based convenience samples lies in the potentially
very low marginal cost per respondent. Attracting respondents to a
Web site does not require expensive labor (as phone calling does) or
expensive materials (as mailings do). Furthermore, marginal pro-
cessing costs per respondent are also reduced because the data are
already recorded electronically.

But the disadvantage of convenience samples is obvious—potentially
large and unmeasured bias. One solution to this problem may be to
use a combined probability/convenience sample.

The idea behind this combined-sample concept is that the same sur-
vey would be administered to both a traditional probability sample
(with or without a Web-based response mode) and a Web-based
convenience sample. For example, obtaining a probability sample
with 4,000 individuals and a convenience sample with 10,000 indi-
viduals might be no more expensive than obtaining a probability
sample with 5,000 individuals (assuming that convenience observa-
tions are one-tenth the cost of probability observations).

The probability sample will provide a means of measuring the bias
present in the convenience sample, parameter by parameter. With
an estimate of the amount of bias, one could then combine informa-
tion from the convenience and probability samples to yield more-
precise estimates than would be possible from the probability sam-
ple alone. If the convenience sample is very biased, then it will be
nearly useless. This implies that the probability portion of the sample
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would have to be large enough to stand on its own in a worst-case
scenario.

If the bias is so large that it renders the convenience sample useless,
then there is a moderate loss in precision. (In the example just given,
the standard errors would be increased by 10 percent, hypothetically,
because only 4,000 observations were available instead of 5,000.)
However, if the bias is small, then there is a “precision windfall,”
allowing subgroup analyses that otherwise would not have been
affordable.

USING THE PROBABILITY SAMPLE TO ADJUST THE
CONVENIENCE SAMPLE

Assume a probability sample with X1i that are independently and
identically distributed (iid) with mean µ , variance σ1

2 , i = 1,…,n1.
Also assume a convenience sample of X2j that are iid with mean µ + ε,
variance σ2

2 , j = 1,…,n2; the X1i and X2j are independent; ε, σ1
2 ,and

σ2
2  are known; and µ is the unknown parameter of interest.

One would naturally consider using information in the probability
sample to attempt to remove the bias from the convenience sample
prior to combining the data from the two samples to estimate µ .
That is, one can estimate the bias as  ̂ –ε = X X1 2 , where
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and then use the estimate to adjust each of the convenience sample
observations:  X Xj j2 2
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nience sample observations, the mean can be estimated as
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For this estimator, one could then ask, what is the optimal allocation
of the sample between   n1 and   n2 that would minimize the variance
of   ̂µ ?  The unfortunate reality is that   Var n(ˆ) /µ σ= 1

2
1. Hence, the

variance of the estimator depends only on the sample size of the
probability sample, which means that the variance is minimized a
priori by allocating everything to the probability sample. That is,
after adjustment, the convenience sample contains no information
to contribute to the estimation of the sample mean, so there is no
point in allocating resources to collecting the convenience sample,
no matter how inexpensive the convenience sample observations are
to obtain.

INITIAL BIAS REDUCTION

If attempting to remove the bias from the convenience sample will
prove ineffective, then the only alternative is to use the (potentially)
biased data in the estimation. However, as we show later in this ap-
pendix, and as one might expect, the bias of the convenience sample
must be small. One way to respond to this limitation may be to focus
on estimating parameters that are less subject to bias, such as
within-subject differences or regression coefficients, rather than
population estimates of proportions or means. One can also use
post-stratification to reduce bias as much as possible. For example, a
small set of items can be included in both the convenience and
probability samples that are (1) associated with likelihood of partici-
pation in the Web-based convenience sample (for example, age, ed-
ucation, computer use, and other such factors) and (2) likely to be as-
sociated with the parameters being measured.

To use the post-stratification variables, one should treat the charac-
teristics of the probability sample as the target and model the relative
response probabilities of members of the “convenience sample pool”
with given values of post-stratification variables. Weights inversely
proportional to these estimated relative probabilities are then ap-
plied to the convenience sample only. The design effect from this
process will reduce the effective sample size (ESS) of the convenience
sample, but the low cost of these observations makes compensating
for moderate design effects on the convenience sample affordable.
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LINEAR COMBINATIONS OF BIASED AND UNBIASED
ESTIMATORS OF A POPULATION MEAN

The previous discussion prompts a specific estimation problem:
What is the most efficient estimator that is a linear combination of an
unbiased estimator (the sample mean of the population of interest)
and a biased estimator (the sample mean of a population that is bi-
ased with respect to the population of interest)?

The notation and initial assumptions are as follows: Let   n1 be the
number of observations in the unbiased (probability) sample. Let   n2

*

be the number of observations in the biased (convenience) sample.
Let DEFF be the design effect of post-stratification weights on the
convenience sample. Let  n2  =   n2

* /DEFF be the ESS of the conve-
nience sample. As earlier, assume that X1i are iid with mean µ, vari-
ance σ1

2 , i = 1,…,n1 and assume that X2j  are iid with mean µ + ε,
variance σ2

2 , j = 1,…,n2. Also, as earlier, assume that X1i and X2j are
independent; ε , σ1

2 ,and σ2
2  are  known; and µ  is the unknown

parameter of interest. Thus, ε  is the residual bias after post-
stratification.

We are interested in the estimator ˆ ( – )µ λ λ= +X X2 11  where
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Therefore, the bias and variance of this estimator are:

bias( ˆ ) ;µ λε=  var
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As shorthand notation, let Σ1
2 = σ1

2
1/n  and Σ2

2 = σ2
2

2/n . Note that
Σ1

2 is the mean squared error (MSE) of the probability sample
and Σ2

2 is what the MSE of the convenience sample would be if post-
stratification had removed all bias. In this notation, MSE(  ̂µ ) = ( Σ1

2  +
Σ2

2  + ε2)λ2 – 2 Σ1
2λ  + Σ1

2. The value of λ  that minimizes MSE(  ̂µ )
is λ = Σ1

2/( Σ1
2 + Σ2

2 + ε2), which means that the preferred estimator is
of the following form:
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The intuition for the form just shown is that observations are
weighted inversely to the MSE per observation from each sample.
Again, as shorthand, let Ω= 
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2  + ε2 so that λ = 
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2/ Ω  and 1 – λ
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2+ ε2 )/ Ω . Then, one can write MSE(  ̂µ )= Σ1
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Note that as ε →  0,
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and as ε →  ∞, MSE  →  Σ1
2, the MSE of the probability sample.

Also, as n2 →  ∞,
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which is the minimum MSE possible for a given bias.

QUANTIFYING THE CONTRIBUTIONS OF THE
CONVENIENCE SAMPLE

Let UESS be the sample size of an unbiased sample mean with the
same MSE as the pooled estimator. Then, one can express it as the
following:
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Let IUESS be the increment to UESS added by the convenience
sample. Then, the equivalent probability sample size increment can
be expressed as

IUESS = 
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Next, define the bias in terms of standard deviations of the probabil-
ity sample E =   ε σ/ 1. Now consider the simplified respondent where
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As E→  ∞, IUESS →  0, and as n2 →  ∞, IUESS →  1/E2 = MIUESS, the
maximum possible increment to effective sample size. Note the
striking ceiling on the IUESS. It means that an uncorrected bias of
1/100 of a standard error limits the IUESS to 10,000. This is a pretty
sobering result—an unbiased sample of 150 is preferable to a sample
with 10,000 observations and a standard deviation bias of 0.1.

CONCLUSIONS

We have shown that there is no point in using a probability sample to
remove the bias from a convenience sample. Furthermore, the use of
an unadjusted convenience sample to supplement a probability
sample may be practical only under limited circumstances:

• The probability sample is large (at least 2,000).

• The convenience sample is inexpensive (no more than 20 per-
cent of the cost per observation).

• The convenience sample is large (at least as large as the probabil-
ity sample).

• The bias after post-stratification is very low (no more than three
percentage points).

From a practical point of view, it is also not clear what the source
would be for an estimate of the bias parameter.




